Atom

Dieser Artikel behandelt das naturwissenschaftliche Atom – zu anderen Bedeutungen siehe Atom (Begriffsklärung).
Ein Heliumatom: Der Atomkern (rosa) liegt im Zentrum einer wesentlich größeren Wolke aus zwei Elektronen (grau). In einer maßstäblichen Darstellung würde zu einem Atomkern mit Durchmesser 1 Millimeter eine Elektronenwolke von etwa 100 Meter gehören. Rechts oben ist der Kern aus je zwei Protonen und Neutronen zusätzlich schematisch und vergrößert dargestellt. In Wirklichkeit ist die Anordnung aus den vier Teilchen kugelsymmetrisch.
Die Atome der Elemente in der Anordnung des Periodensystems in maßstäblicher Darstellung ihres kovalenten Radius

Atome (von altgriechisch ἄτομος átomos „unteilbar“) sind die Bausteine, aus denen alle festen, flüssigen oder gasförmigen Stoffe bestehen. Alle Materialeigenschaften dieser Stoffe sowie ihr Verhalten in chemischen Reaktionen werden durch die Eigenschaften und die räumliche Anordnung ihrer Atome festgelegt. Jedes Atom gehört zu einem bestimmten chemischen Element und bildet dessen kleinste Einheit. Zurzeit sind 118 Elemente bekannt, von denen etwa 90 auf der Erde natürlich vorkommen. Atome verschiedener Elemente unterscheiden sich in ihrer Größe und Masse und vor allem in ihrer Fähigkeit, mit anderen Atomen chemisch zu reagieren und sich zu Molekülen oder festen Körpern zu verbinden. Die Durchmesser von Atomen liegen im Bereich von 6 · 10−11 m (Helium) bis 5 · 10−10 m (Cäsium), ihre Massen in einem Bereich von 1,7 · 10−27 kg (Wasserstoff) bis knapp 5 ·10−25 kg (die derzeit schwersten synthetisch hergestellten Kerne).

Atome sind nicht unteilbar, wie zum Zeitpunkt der Namensgebung angenommen, sondern zeigen einen wohlbestimmten Aufbau aus noch kleineren Teilchen. Sie bestehen aus einem Atomkern und einer Atomhülle. Der Atomkern hat einen Durchmesser von etwa einem Zehn- bis Hunderttausendstel des gesamten Atomdurchmessers, enthält jedoch über 99,9 Prozent der Atommasse. Er besteht aus positiv geladenen Protonen und einer Anzahl von etwa gleich schweren, elektrisch neutralen Neutronen. Diese Nukleonen sind durch die starke Wechselwirkung aneinander gebunden. Die Hülle besteht aus negativ geladenen Elektronen. Sie trägt mit weniger als 0,06 Prozent zur Masse bei, bestimmt jedoch die Größe des Atoms. Der positive Kern und die negative Hülle sind durch elektrostatische Anziehung aneinander gebunden. In der elektrisch neutralen Grundform des Atoms ist die Anzahl der Elektronen in der Hülle gleich der Anzahl der Protonen im Kern. Diese Zahl legt den genauen Aufbau der Hülle und damit auch das chemische Verhalten des Atoms fest und wird deshalb als chemische Ordnungszahl bezeichnet. Alle Atome desselben Elements haben die gleiche chemische Ordnungszahl. Sind zusätzliche Elektronen vorhanden oder fehlen welche, ist das Atom negativ bzw. positiv geladen und wird als Ion bezeichnet.

Die Vorstellung vom atomaren Aufbau der Materie existierte bereits in der Antike, war jedoch bis in die Neuzeit umstritten. Der endgültige Nachweis konnte erst Anfang des 20. Jahrhunderts erbracht werden und gilt als eine der bedeutendsten Entdeckungen in Physik und Chemie. Einzelne Atome sind selbst mit den stärksten Lichtmikroskopen nicht zu erkennen. Eine direkte Beobachtung einzelner Atome ist erst seit Mitte des 20. Jahrhunderts mit Feldionenmikroskopen möglich, seit einigen Jahren auch mit Rastertunnelmikroskopen und hochauflösenden Elektronenmikroskopen. Die Atomphysik, die neben dem Aufbau der Atome auch die Vorgänge in ihrem Inneren und ihre Wechselwirkungen mit anderen Atomen erforscht, hat entscheidend zur Entwicklung der modernen Physik und insbesondere der Quantenmechanik beigetragen.

Erforschungsgeschichte

Die Vorstellung vom atomaren Aufbau der Materie existierte bereits in der Antike, allerdings nur in Form von philosophischen Überlegungen. Noch Anfang des 20. Jahrhunderts war ihre Existenz umstritten. Aufgrund ihrer extrem geringen Größe sind einzelne Atome selbst mit den stärksten Lichtmikroskopen nicht zu erkennen. Der endgültige Nachweis ihrer Existenz gilt als eine der bedeutendsten Entdeckungen in Physik und Chemie. Einen entscheidenden Beitrag lieferte Albert Einstein 1905, indem er die bereits seit langem bekannte, im Mikroskop direkt sichtbare Brownsche Bewegung kleiner Körnchen quantitativ dadurch erklärte, dass sie von zufällig gehäuften Stößen von Atomen oder Molekülen aus der Umgebung herrührte. Erst seit wenigen Jahrzehnten erlauben Feldionenmikroskope und Rastertunnelmikroskope, seit einigen Jahren zudem auch Elektronenmikroskope, einzelne Atome direkt zu beobachten.

Philosophische Überlegungen

Das Konzept des Atomismus, nämlich dass Materie aus Grundeinheiten aufgebaut ist – „kleinsten Teilchen“, die nicht immer weiter in kleinere Stücke zerteilt werden können – existiert seit Jahrtausenden, genauso wie das Gegenkonzept, Materie sei ein beliebig teilbares Kontinuum. Doch diese Ideen beruhten zunächst ausschließlich auf philosophischen Überlegungen und nicht auf empirischer experimenteller Untersuchung. Dabei wurden den Atomen verschiedene Eigenschaften zugeschrieben, und zwar je nach Zeitalter, Kultur und philosophischer Schule sehr unterschiedliche.

Eine frühe Erwähnung des Atomkonzepts in der Philosophie ist aus Indien bekannt. Die Nyaya- und Vaisheshika-Schulen entwickelten ausgearbeitete Theorien, wie sich Atome zu komplexeren Gebilden zusammenschlössen (erst in Paaren, dann je drei Paare).[1]

In der griechischen Philosophie ist die Atomvorstellung erstmals im 5. Jahrhundert v. Chr. bei Leukipp überliefert. Sein Schüler Demokrit systematisierte sie und führte den Begriff átomos (ἄτομος) ein, was etwa „das Unzerschneidbare“ bedeutet, also ein nicht weiter zerteilbares Objekt. Diese Bezeichnung wurde Ende des 18. Jahrhunderts für die damals hypothetischen kleinsten Einheiten der chemischen Elemente der beginnenden modernen Chemie übernommen, denn mit chemischen Methoden lassen sich Atome in der Tat nicht „zerschneiden“.

Experimentell arbeitende Naturwissenschaftler machten sich Ende des 18. Jahrhunderts die Hypothese vom Atom zu eigen, weil diese Hypothese im Rahmen eines Teilchenmodells der Materie eine elegante Erklärung für neue Entdeckungen in der Chemie bot.[2] Doch wurde gleichzeitig die gegenteilige Vorstellung, Materie sei ein Kontinuum, von Philosophen und auch unter Naturwissenschaftlern noch bis ins 20. Jahrhundert hinein aufrechterhalten.[3]

Naturwissenschaftliche Erforschung

Im Rahmen der wissenschaftlichen Erforschung konnte die Existenz von Atomen bestätigt werden. Es wurden viele verschiedene Atommodelle entwickelt, um ihren Aufbau zu beschreiben. Insbesondere das Wasserstoffatom als das einfachste aller Atome war dabei wichtig. Einige der Modelle werden heute nicht mehr verwendet und sind nur von wissenschaftsgeschichtlichem Interesse. Andere gelten je nach Anwendungsbereich als noch heute brauchbare Näherung. In der Regel wird das einfachste Modell genommen, welches im gegebenen Zusammenhang noch ausreicht, um die auftretenden Fragen zu klären.

Viele der im Folgenden genannten Entdeckungen (sofern nach 1900) wurden mit dem Nobelpreis für Physik oder Chemie ausgezeichnet.

Bestätigung der Atomhypothese

Verschiedene Atome und Moleküle, wie sie in A New System of Chemical Philosophy (1808) von John Dalton abgebildet sind.

Robert Boyle vertrat 1661 in seinem Werk The Sceptical Chymist die Meinung, die Materie sei aus diversen Kombinationen verschiedener corpuscules aufgebaut und nicht aus den vier Elementen der Alchemie: Wasser, Erde, Feuer, Luft.[4] Damit bereitete er die Überwindung der Alchemie durch den Element- und Atombegriff der modernen Chemie vor.

Daniel Bernoulli zeigte 1740, dass der gleichmäßige Druck von Gasen auf die Behälterwände, insbesondere das Gesetz von Boyle und Mariotte, sich durch zahllose Stöße kleinster Teilchen erklären lässt. Damit wurde seine Forschung zum Vorläufer der kinetischen Gastheorie und statistischen Mechanik.

Ab Ende des 18. Jahrhunderts wurde die Vorstellung von Atomen genutzt, um die wohlbestimmten Winkel an den Kanten und Ecken der Edelsteine auf die verschiedenen möglichen Schichtungen von harten Kugeln zurückzuführen.[5]

Nachdem Antoine Lavoisier 1789 den heutigen Begriff des chemischen Elements geprägt und die ersten Elemente richtig identifiziert hatte,[6] benutzte 1803 John Dalton das Atomkonzept, um zu erklären, wieso Elemente immer in Mengenverhältnissen kleiner ganzer Zahlen miteinander reagieren (Gesetz der multiplen Proportionen). Er nahm an, dass jedes Element aus gleichartigen Atomen besteht, die sich nach festen Regeln miteinander verbinden können und so Stoffe mit anderen Materialeigenschaften bilden.[7][8] Außerdem ging er davon aus, dass alle Atome eines Elements die gleiche Masse hätten, und begründete damit den Begriff Atomgewicht.[9]

Die Beobachtungen zum chemischen und physikalischen Verhalten von Gasen konnte Amedeo Avogadro 1811 dahingehend zusammenfassen, dass zwei ideale Gase bei gleichen Werten von Volumen, Druck und Temperatur des Gases immer aus gleich vielen identischen Teilchen („Molekülen“) bestehen. Die Moleküle bestehen bei elementaren Gasen wie Wasserstoff, Sauerstoff oder Stickstoff immer aus zwei Atomen des Elements (Avogadrosches Gesetz).

1866 konnte Johann Loschmidt die Größe der Luftmoleküle bestimmen, indem er mit einer von James C. Maxwell aus der kinetischen Gastheorie gewonnenen Formel die von George Stokes gemessenen Werte für die innere Reibung in Luft auswertete.[10] Damit konnte er das Gewicht eines Luftmoleküls bestimmen. Außerdem erhielt er die nach ihm benannte Loschmidtsche Zahl als Anzahl der Luftmoleküle pro Kubikzentimeter (unter Normalbedingungen).

Infolge der Arbeiten von Avogadro und Stanislao Cannizzaro wurde angenommen, dass Atome nicht als einzelne Teilchen auftreten, sondern nur als Bestandteile von Molekülen aus mindestens zwei Atomen. Doch 1876 gelang August Kundt und Emil Warburg der erste Nachweis eines einatomigen Gases. Sie bestimmten den Adiabatenexponenten von Quecksilber-Dampf bei hoher Temperatur und erhielten einen Wert, wie er nach der kinetischen Gastheorie nur für Teilchen in Gestalt echter Massepunkte auftreten kann. Ab 1895 kamen entsprechende Beobachtungen an den neu entdeckten Edelgasen hinzu.[3]

Nach Erscheinen seiner Dissertation über die Bestimmung von Moleküldimensionen[11] schlug Albert Einstein im selben Jahr 1905 ein Experiment vor, um die Hypothese von der Existenz der Atome anhand der Zitterbewegung kleiner Partikel in Wasser quantitativ zu prüfen. Nach seiner Theorie müssten die Partikel aufgrund der Unregelmäßigkeit der Stöße durch die Wassermoleküle kleine, aber immerhin unter dem Mikroskop sichtbare Bewegungen ausführen.[12][13][14] Es war Einstein dabei zunächst nicht bekannt, dass er damit die seit 1827 bekannte Brownsche Bewegung von Pollen quantitativ erklärt hatte, für deren Ursache schon 1863 Christian Wiener erstmals Molekularstöße angenommen hatte.[15] Nach Einsteins Formeln hängt die Stärke der Zitterbewegung von der Masse der stoßenden Moleküle ab, und auf dieser Grundlage bestimmte der französische Physiker Jean Perrin die Molekülmasse experimentell und fand ähnliche Ergebnisse wie Loschmidt.[16] Diese Arbeiten trugen entscheidend zur allgemeinen Anerkennung der bis dahin so genannten „Atomhypothese“ bei.

Teilbarkeit und Aufbau der Atome

Joseph John Thomson entdeckte 1897, dass die Kathodenstrahlen aus Teilchen bestimmter Ladung und Masse bestehen, und dass deren Masse kleiner als ein Tausendstel der Atommasse ist. Diese Teilchen wurden als Elektronen bezeichnet und erwiesen sich als ein Bestandteil aller Materie, was dem Konzept des Atoms als unzerteilbarer Einheit widersprach.[17] Thomson glaubte, dass die Elektronen dem Atom seine Masse verliehen und dass sie im Atom in einem masselosen, positiv geladenen Medium verteilt seien wie „Rosinen in einem Kuchen“ (Thomsonsches Atommodell).

Die kurz zuvor von Henri Becquerel entdeckte Radioaktivität wurde von Marie Curie als eine Strahlung direkt aus den einzelnen Atomen angesehen und 1903 von Ernest Rutherford und Frederick Soddy mit Umwandlungen verschiedener Atomsorten ineinander in Verbindung gebracht. Rutherford und Soddy konnten 1908 nachweisen, dass aus den α-Teilchen, die die Alphastrahlung bilden, Helium-Atome werden.

Zusammen mit seiner Forschergruppe beschoss Ernest Rutherford 1909 eine Goldfolie mit α-Teilchen. Er stellte fest, dass die meisten der Teilchen die Folie fast ungehindert durchdrangen, einige wenige aber um sehr viel größere Winkel abgelenkt wurden, als nach Thomsons Modell möglich wäre. Rutherford schloss daraus, dass fast die ganze Masse des Atoms in einem sehr viel kleineren, elektrisch geladenen Volumen in der Mitte des Atoms konzentriert sei und schuf damit das seitdem gültige Rutherfordsche Atommodell mit dem grundlegenden Aufbau des Atoms aus Atomkern und Atomhülle. Die stark abgelenkten α-Teilchen waren diejenigen, die einem Kern zufällig näher als etwa ein Hundertstel des Atomradius gekommen waren.[18] Die Ladungszahl des Atomkerns entpuppte sich als die chemische Ordnungszahl des betreffenden Elements, und α-Teilchen erwiesen sich als die Atomkerne des Heliums.

Einfaches Massenspektrometer (Schematische Darstellung)

Der Chemiker Frederick Soddy stellte 1911 fest, dass manche der natürlichen radioaktiven Elemente aus Atomen mit unterschiedlichen Massen und unterschiedlicher Radioaktivität bestehen mussten.[19] Der Begriff Isotop für physikalisch verschiedene Atome desselben chemischen Elements wurde 1913 von Margaret Todd vorgeschlagen.[20] Da die Isotope desselben Elements an ihrem chemischen Verhalten nicht zu unterscheiden waren, entwickelte der Physiker J.J. Thomson ein erstes Massenspektrometer zu ihrer physikalischen Trennung. Damit konnte er 1913 am Beispiel von Neon nachweisen, dass es auch stabile Elemente mit mehreren Isotopen gibt.[21]

1918 fand Francis William Aston mit einem Massenspektrometer von erheblich größerer Genauigkeit heraus, dass fast alle Elemente Gemische aus mehreren Isotopen sind, wobei die Massen der einzelnen Isotope immer (nahezu) ganzzahlige Vielfache der Masse des Wasserstoffatoms sind.[22] Rutherford wies 1919 in der ersten beobachteten Kernreaktion nach, dass durch Beschuss mit α-Teilchen aus den Kernen von Stickstoffatomen die Kerne von Wasserstoffatomen herausgeschossen werden können. Diesen gab er den Namen Proton und entwickelte ein Atommodell, in dem die Atome nur aus Protonen und Elektronen bestehen, wobei die Protonen und ein Teil der Elektronen den kleinen, schweren Atomkern bilden, die übrigen Elektronen die große, leichte Atomhülle. Die Vorstellung von Elektronen im Atomkern stellte sich jedoch als problematisch heraus und wurde 1932 endgültig fallengelassen, nachdem von James Chadwick das Neutron als ein neutraler Kernbaustein mit etwa gleicher Masse wie das Proton nachgewiesen wurde.[23] Damit entstand das heutige Atommodell: Der Atomkern ist zusammengesetzt aus so vielen Protonen wie die Ordnungszahl angibt, und zusätzlich so vielen Neutronen, dass die betreffende Isotopenmasse erreicht wird; die Atomhülle besteht aus so vielen Elektronen, dass das ganze Atom neutral wird.

Aufbau der Atomhülle

Hauptartikel: Atomhülle
Illustration des Bohrschen Modells des Wasserstoffatoms (Z=1) mit einem Elektron, das zwischen festen Umlaufbahnen (Orbits) springt und dabei ein Photon mit einer bestimmten Frequenz f abstrahlt.

Die beobachteten Eigenschaften (wie Größe, Stabilität, Reaktionsweisen) der Atomhülle konnten im Rahmen der klassischen Physik keine Erklärung finden. Erst unter Einbeziehung von neuartigen Quantisierungsregeln mithilfe des Planckschen Wirkungsquantums konnte Niels Bohr 1913 erklären, wie es in den optischen Spektren reiner Elemente zu den Spektrallinien kommt, die für das jeweilige Element absolut charakteristisch sind (Spektralanalyse nach Robert Wilhelm Bunsen und Gustav Robert Kirchhoff 1859). Im Franck-Hertz-Versuch konnte die quantisierte Energieaufnahme und -abgabe an Quecksilberatomen experimentell bestätigt werden. Das Bohrsche Atommodell war zwar nur für Systeme mit lediglich einem Elektron (damals nur Wasserstoff und ionisiertes Helium) gültig, bildete jedoch im Laufe des folgenden Jahrzehnts das Fundament für eine Reihe von Verfeinerungen. Sie führten im Schalenmodell zu einem ersten Verständnis des Aufbaus der Elektronenhüllen aller Elemente und damit auch zum physikalischen Verständnis des chemischen Periodensystems. Damit wurde das Bohrsche Atommodell zur Grundlage des populären Bildes vom Atom als einem kleinen Planetensystem.[24]

Orbitalmodell des Atoms: Darstellung der Atomorbitale der ersten (2 Elektronen) und zweiten (8 Elektronen) Elektronenschale

1925 entwickelte Werner Heisenberg zusammen mit Max Born, Pascual Jordan, Wolfgang Pauli u. a. die Matrizenmechanik. 1926 ersetzte Erwin Schrödinger die Quantisierungsregeln durch seine Wellenmechanik. Sie beschreibt die Elektronen nicht als Massenpunkte auf bestimmten ebenen Bahnen, sondern als in drei Dimensionen ausgedehnte stehende Materiewelle. Beide Formen einer neuen "Quantenmechanik" konnten das Spektrum des Wasserstoffatoms richtig erklären. Als Folge dieser Beschreibungen ist es unter anderem unzulässig, einem Elektron gleichzeitig genaue Werte für Ort und Impuls zuzuschreiben. Dieser Sachverhalt wurde 1927 von Heisenberg in der Unschärferelation formuliert. Demnach können statt der Bewegung auf bestimmten Bahnen nur Wahrscheinlichkeitsverteilungen für Wertebereiche von Ort und Impuls angegeben werden, eine Vorstellung, die nur schwer zu veranschaulichen ist. Den quantisierten Umlaufbahnen des Bohrschen Modells entsprechen hier „Atomorbitale“. Sie geben unter anderem an, wie sich in der Nähe des Atomkerns die Aufenthaltswahrscheinlichkeit der Elektronen konzentriert, und bestimmen damit die wirkliche Größe des Atoms.

Die Beschreibung der Eigenschaften der Atome gelang mit diesen ersten vollständig quantenmechanischen Atommodellen sehr viel besser als mit den Vorläufermodellen. Insbesondere ließen sich auch bei Atomen mit mehreren Elektronen die Spektrallinien und die Struktur der Atomhülle in räumlicher und energetischer Hinsicht darstellen, einschließlich der genauen Möglichkeiten, mit den Atomhüllen anderer Atome gebundene Zustände zu bilden, also stabile Moleküle. Daher wurde das Bohrsche Atommodell zugunsten des quantenmechanischen Orbitalmodells des Atoms verworfen.[25][26]

Das Orbitalmodell ist bis heute Grundlage und Ausgangspunkt genauer quantenmechanischer Berechnungen fast aller Eigenschaften der Atome. Das Orbitalmodell bei einem Atom mit mehr als einem Elektron ist physikalisch als eine Näherung zu bezeichnen, nämlich als eine Ein-Teilchen-Näherung, die jedem einzelnen Elektron ein bestimmtes Orbital zuschreibt. Ein so gebildeter Zustand wird als Konfiguration des Atoms bezeichnet und gehört in der Quantenmechanik zu der einfachsten Art von Mehrteilchenzuständen. Genauere Modelle berücksichtigen, dass nach den Regeln der Quantenmechanik die Hülle auch in einem Zustand sein kann, der durch Superposition verschiedener Konfigurationen entsteht, wo also mit verschiedenen Wahrscheinlichkeitsamplituden gleichzeitig verschiedene Elektronenkonfigurationen vorliegen (Konfigurationsmischung). Hiermit werden die genauesten Berechnungen von Energieniveaus und Wechselwirkungen der Atome möglich. Wegen des dazu nötigen mathematischen Aufwands werden jedoch, wo es möglich ist, auch weiterhin einfachere Atommodelle genutzt. Zu nennen ist hier neben dem Schalenmodell unter anderen das Thomas-Fermi-Modell, in dem die Elektronenhülle pauschal wie ein im Potentialtopf gebundenes ideales Elektronengas („Fermigas“) behandelt wird, dessen Dichte wiederum zusammen mit der Kernladung die Form des elektrostatischen Potentialtopfs bestimmt.

Aufbau des Atomkerns

Hauptartikel: Atomkern

Zur Entdeckung des Atomkerns und seiner Zusammensetzung aus Protonen und Neutronen siehe den Abschnitt "Teilbarkeit und Aufbau der Atome" oben. Hier folgen Stichworte zur Erforschung weiterer Eigenschaften der Kerne.

Bindungsenergie

Die Bindungsenergie der Nukleonen ist Ursache der hohen Energie der Quanten der radioaktiven Strahlung. Sie übersteigt die chemische Bindungsenergie von Molekülen um fünf bis sechs Größenordnungen. Ab 1935 war hierbei erstmals eine grobe Modellvorstellung erfolgreich, das Tröpfchenmodell von C.F. von Weizsäcker und Hans Bethe. Damit wurde für Kerne ab etwa 10 Nukleonen die anfängliche Zunahme der mittleren Bindungsenergie bis etwa $ A=60 $ durch die wachsende Anzahl erklärt, in der die Nukleonen sich aufgrund der eigentlichen Kernkräfte mit ihren jeweiligen Nachbarn binden, und danach die Abnahme der mittleren Bindungsenergie aufgrund der zunehmenden elektrostatischen Abstoßung, die alle Protonen untereinander betrifft.

Kernfusion und Kernspaltung

Da das Maximum der mittleren Bindungsenergie bei mittelschweren Kernen liegt, bedeutet es Energiefreisetzung sowohl, wenn sehr leichte Kerne fusionieren, als auch wenn sehr schwere Kerne spalten. Die Fusion von Wasserstoff zu Helium wurde 1938 als Energiequelle der Sterne identifiziert. Die Spaltung nach Neutroneneinfang wurde erstmals 1938 an Urankernen (des Isotops U-235) durch Otto Hahn und Fritz Strassmann nachgewiesen. Danach wurde die Kernforschung erheblich intensiviert und führte 1945 zu den ersten Atombomben, 1952 den Wasserstoffbomben und ab Mitte der 1950er Jahre zur Nutzung der Atomenergie zur Energieversorgung.

Schalenmodell und vereinheitlichtes Modell

Sehr viel detaillierter als das Tröpfchenmodell ist das 1949 von J.H.D. Jensen und Maria Goeppert-Mayer aufgestellte Schalenmodell der Kerne. Ähnlich wie das Schalenmodell der Atome nimmt es für je ein Nukleon ein bestimmtes Orbital in einem gemeinsamen kugelsymmetrischen Potentialtopf an. Damit kann eine Fülle von Daten über die Grundzustände und angeregten Zustände der Kerne erklärt werden, zum Beispiel ihr Kernspin, ihr magnetisches Dipol- und elektrisches Quadrupolmoment, sowie über ihre Zerfalls- und Reaktionsweisen. Aage Bohr, Ben Mottelson und James Rainwater gelang es Anfang der 1960er Jahre, dies Einzelteilchenmodell mit den Aspekten kollektiver Bewegung zu verbinden, womit auch die Abweichungen von der Kugelgestalt in bestimmten Bereichen der Nukleonenzahlen verständlich wurden.

Ursprung der Kernkräfte

Die kurzreichweitigen Kernkräfte konnten in den 1970er Jahren auf die Starke Wechselwirkung zwischen Quarks zurückgeführt werden.[27][28]

Aufbau von Proton und Neutron

Ab den 1950er Jahren konnten Atome und vor allem die Atomkerne durch die Entwicklung verbesserter Teilchenbeschleuniger und Teilchendetektoren beim Beschuss mit Teilchen sehr hoher Energie untersucht werden.[29] Ende der 1960er Jahre zeigte sich in der „tiefinelastischen Streuung“ von Elektronen an Atomkernen, dass auch Neutronen und Protonen keine unteilbaren Einheiten sind, sondern aus Quarks zusammengesetzt sind.[30]

Einige fortgeschrittene Experimente mit Atomen

1951 entwickelte Erwin Müller das Feldionenmikroskop und konnte damit von einer Nadelspitze erstmals ein Abbild erzeugen, das auf direkte Weise so stark vergrößert war, dass einzelne Atome darin sichtbar wurden (wenn auch nur als verschwommene Flecken). 1953 entwickelte Wolfgang Paul die magnetische Ionenfalle (Paulfalle), in der einzelne Ionen gespeichert und mit immer höherer Genauigkeit untersucht werden können.

1985 entwickelte eine Arbeitsgruppe um Steven Chu die Laserkühlung, ein Verfahren, die Temperatur einer Ansammlung von Atomen mittels Laser­strahlung stark zu verringern. Im selben Jahr gelang es einer Gruppe um William D. Phillips, neutrale Natriumatome in einer magneto-optischen Falle einzuschließen. Durch Kombination dieser Verfahren mit einer Methode, die den Dopplereffekt nutzt, gelang es einer Arbeitsgruppe um Claude Cohen-Tannoudji, geringe Mengen von Atomen auf Temperaturen von einigen Mikrokelvin zu kühlen. Mit diesem Verfahren können Atome mit höchster Genauigkeit untersucht[31] werden; außerdem ermöglichte es auch die experimentelle Realisierung der Bose-Einstein-Kondensation.[32]

Anfang der 1980er Jahre wurde von Gerd Binnig und Heinrich Rohrer das Rastertunnelmikroskop entwickelt, in dem eine Nadelspitze eine Oberfläche mittels des Tunneleffekts so fein abtastet, dass einzelne Atome sichtbar werden.[33][34] Damit wurde es auch möglich, Atome einzeln an bestimmte Plätze zu setzen. In den 1990er Jahren konnten Serge Haroche und David Wineland in Experimenten die Wechselwirkung eines einzelnen Atoms mit einem einzelnen Photon erfolgreich untersuchen. In den 2000er Jahren wurde die Handhabbarkeit einzelner Atome unter anderem genutzt, um einen Transistor aus nur einem Metallatom mit organischen Liganden herzustellen.[35]

Seit Ende der 1980er Jahre werden durch Vielfachanregung mit einem Laserimpuls Rydberg-Atome erzeugt. In einem Rydberg-Atom ist ein Elektron in einem so hohen Energiezustand angeregt, dass es den Atomkern, teilweise auch den gesamten Atomrumpf, bestehend aus dem Atomkern und den restlichen Elektronen, in weitem Abstand umkreist und sein Verhalten sich damit dem eines klassischen Teilchens nähert. Rydberg-Atome können über 100.000-mal größer sein als nicht angeregte Atome. Da sie extrem empfindlich auf äußere Felder reagieren, kann man mit ihnen z. B. die Wechselwirkung eines einzelnen Atoms mit einem einzelnen Photon im Detail untersuchen. Sind zwei oder mehr Elektronen in solchen Zuständen angeregt, spricht man von planetarischen Atomen.

Klassifizierung

Periodensystem
Nuklidkarte

Elemente, Isotope, Nuklide

Die Unterscheidung und Bezeichnung verschiedener Atomsorten geht zunächst vom Aufbau des Atomkerns aus, während der Zustand der Hülle gegebenenfalls durch zusätzliche Symbole angegeben wird. Kennzahlen sind die Protonenzahl (Ordnungszahl, Kernladungszahl) Z, die Neutronenzahl N des Kerns, und die daraus gebildete Massenzahl A=Z+N. Je nach ihrer Protonenzahl gehören die Atome zu einem der 118 bekannten chemischen Elemente, von Wasserstoff mit Z=1 bis Oganesson mit Z=118. Davon sind 91 in natürlichen Vorkommen entdeckt worden, 27 nur nach künstlicher Herstellung durch Kernreaktionen. Die Ordnung der Elemente wird im Periodensystem – wichtig für die Chemie – graphisch veranschaulicht. Darin werden die Elemente mit aufsteigender Ordnungszahl in Form einer Tabelle angeordnet. Jede Zeile wird als Periode des Periodensystems bezeichnet und endet, wenn das jeweilige Orbital mit Elektronen voll besetzt ist (Edelgas). In den nächsten Zeilen wiederholt sich aufgrund der schrittweisen Elektronenbesetzung der nächsten Orbitale der chemische Charakter der Elemente. So stehen Elemente mit ähnlichen chemischen Eigenschaften in einer Spalte untereinander; sie bilden eine Gruppe des Periodensystems.

Atome eines Elements, die sich in der Neutronenzahl unterscheiden, gehören zu verschiedenen Isotopen des Elements. Insgesamt bestehen die 118 Elemente aus etwa 2800 Isotopen, wovon 2500 künstlich erzeugt wurden. Isotope werden – bis auf die Ausnahmen der Wasserstoffisotope Deuterium und Tritium – nach dem chemischen Element und der Massenzahl bezeichnet. Das Symbol für ein bestimmtes Isotop des Elements $ X $ hat die Form $ ^{A}_{Z}\mathrm {X} $, $ ^{A}\mathrm {X} $ oder X-A (Beispiele: $ ^{12}_{\,\,6}\mathrm {C} $, $ ^{58}\mathrm {Fe} $, Pb-208). Die Angabe der Protonenzahl Z ist redundant, da sie schon durch die Ordnungszahl des Elements $ X $ gegeben ist.

Nuklid ist die ganz allgemeine Bezeichnung für Atomarten, unabhängig davon, ob sie zum gleichen Element gehören oder nicht. Die Nuklidkarte oder Isotopenkarte – wichtig für die Kernphysik und ihre Anwendungen – ist eine Tabelle, in der jede Atomart einen eigenen Platz erhält. Dazu wird auf einer Achse die Anzahl der Protonen, auf der anderen die der Neutronen aufgetragen. Häufig wird die Stabilität und bei instabilen Nukliden auch die Art der Umwandlung oder die Größenordnung der Halbwertszeit durch bestimmte Farben und gegebenenfalls auch Teilung des dem Isotop zugewiesenen Platzes dargestellt.

Stabile und instabile (radioaktive) Atome

Der Atomkern eines Nuklids $ ^{A}_{Z}\mathrm {X} $ kann entweder im energetischen Grundzustand oder in einem der verschiedenen Anregungszustände vorliegen. Wenn darunter relativ langlebige, sogenannte metastabile Zustände sind, werden diese als Isomere bezeichnet und als eigene Nuklide gezählt (Symbol $ ^{A}_{Z}\mathrm {X} ^{m} $, $ ^{A}_{Z}\mathrm {X} ^{*} $ o. ä.). Nach dieser Definition sind mit dem Stand von 2003 insgesamt etwa 3200 Nuklide bekannt.[36]

In der Kernphysik werden Nuklide mit unterschiedlichen Protonenzahlen, aber gleicher Massenzahl $ A $ als Isobare bezeichnet. Seltener werden unter dem Namen Isotone Nuklide mit verschiedenen Protonenzahlen, aber gleicher Neutronenzahl zusammengefasst.

Nur etwa 250 Isotope von 80 Elementen haben einen stabilen Kern. Alle anderen Atome sind instabil und wandeln sich über kurz oder lang in Atome eines stabilen Isotops um. Da sie dabei im Allgemeinen ionisierende Strahlung aussenden, heißen sie auch Radioisotope oder Radionuklide. Auf der Erde wurden in den natürlichen Vorkommen neben allen 250 stabilen Isotopen 30 Radioisotope gefunden, die sich auf 10 radioaktive Elemente verteilen und die natürliche Radioaktivität verursachen.[37] Viele weitere kurzlebige Isotope existieren im Inneren von Sternen, insbesondere während der Supernova-Phase.

Seltene und theoretische Formen

Als Rydberg-Atom wird ein Atom bezeichnet, in dem ein Elektron in einem so hohen Energiezustand angeregt ist, dass es den Atomkern, teilweise auch den gesamten Atomrumpf, bestehend aus dem Atomkern und den restlichen Elektronen, in weitem Abstand umkreist und sein Verhalten damit dem eines klassischen Teilchens ähnelt. Rydberg-Atome können über 100.000-mal größer sein als nicht angeregte Atome. Da sie extrem empfindlich auf äußere Felder reagieren, kann man mit ihnen z. B. die Wechselwirkung mit einem einzelnen Photon im Detail untersuchen. Sind zwei oder mehr Elektronen in solchen Zuständen angeregt, spricht man von planetarischen Atomen.

Im teils übertragenen Sinn werden als exotische Atome auch solche Systeme bezeichnet, die in physikalischer Hinsicht gewisse Ähnlichkeiten zu den gewöhnlichen Atomen aufweisen. In ihnen kann z. B. eines der Protonen, Neutronen oder Elektronen durch ein anderes Teilchen derselben Ladung ersetzt worden sein. Wird etwa ein Elektron durch ein schwereres Myon ersetzt, bildet sich ein myonisches Atom.[38][39][40] Als Positronium wird ein exotisches Atom bezeichnet, in dem ein Elektron statt an ein Proton an ein Positron, das ist das positiv geladene Antiteilchen des Elektrons, gebunden ist. Auch Atome, die gänzlich aus Antiteilchen zur normalen Materie aufgebaut sind, sind möglich. So wurden erstmals 1995 am Genfer CERN Antiwasserstoffatome künstlich hergestellt und nachgewiesen.[41] An solchen exotischen Atomen lassen sich unter anderem fundamentale physikalische Theorien über die Symmetrie zwischen Teilchen und Antiteilchen überprüfen.

Des Weiteren wird der Name Atom manchmal auch für Zwei-Teilchen-Systeme verwendet, die nicht durch elektromagnetische Wechselwirkung zusammengehalten werden, sondern durch die starke Wechselwirkung. Bei einem solchen Quarkonium handelt es sich um ein kurzlebiges Elementarteilchen vom Typ Meson, das aus einem Quark und einem Antiquark aufgebaut ist. Ein Quarkonium-Atom lässt sich in seinen verschiedenen metastabilen Zuständen so durch Quantenzahlen klassifizieren wie das Wasserstoffatom.

Entstehung

Etwa eine Sekunde nach dem Urknall kamen wegen sinkender Temperatur die ständigen Umwandlungen zwischen den Elementarteilchen zur Ruhe, übrig blieben Elektronen, Protonen und Neutronen. In den darauf folgenden drei Minuten verbanden sich in der primordialen Nukleosynthese die vorhandenen Neutronen mit Protonen zu den einfachsten Kernen: Deuterium, Helium, in geringerem Umfang auch Lithium und möglicherweise in noch kleineren Mengen Beryllium und Bor. Die übrigen Protonen (86 Prozent) blieben erhalten.[42] Die ersten neutralen Atome mit dauerhaft gebundenen Elektronen wurden erst 380.000 Jahre nach dem Urknall in der Rekombinationsphase gebildet, als das Universum durch Expansion so weit abgekühlt war, dass die Atome nicht sogleich wieder ionisiert wurden.[43]

Die Kerne aller schwereren Atome wurden und werden durch verschiedene Prozesse der Kernfusion erzeugt. Am wichtigsten ist die stellare Nukleosynthese, durch die in Sternen zunächst Helium, anschließend auch die schwereren Elemente bis zum Eisen gebildet werden. Elemente mit höheren Kernladungszahlen als Eisen entstehen in explosionsartigen Vorgängen wie im r-Prozess in Supernovae und im s-Prozess in AGB-Sternen, die kurz vor dem Ende ihrer Lebensdauer sind.

Kleine Mengen verschiedener Elemente und Isotope werden auch dadurch gebildet, dass schwere Kerne wieder geteilt werden. Das geschieht durch radioaktive Zerfälle (siehe Zerfallsreihe), die u. a. für einen Teil des Vorkommens von Helium und Blei verantwortlich sind, und Spallationen, die für die Entstehung von Lithium, Beryllium und Bor wichtig sind.[44]

Vorkommen und Verteilung

Häufigkeiten von Elementen im Universum (logarithmische Skala)

Im beobachtbaren Universum liegen die Atome mit einer mittleren Dichte von 0,25 Atome/m³ vor. Nach dem Urknallmodell (Lambda-CDM-Modell) bilden sie etwa 4,9 Prozent der gesamten Energiedichte. Die übrigen 95,1 Prozent, deren Natur noch weitgehend unklar ist, setzen sich aus etwa 27 Prozent dunkler Materie und 68 Prozent dunkler Energie zusammen,[45] sowie kleinen Beiträgen von Neutrinos und elektromagnetischer Strahlung.[46] Im Inneren einer Galaxie wie etwa der Milchstraße ist im interstellaren Medium (ISM) die Dichte der Atome wesentlich höher und liegt zwischen 104 und 1011 Atome/m3.[47] Die Sonne befindet sich in der weitgehend staubfreien lokalen Blase, daher ist die Dichte in der Umgebung des Sonnensystems nur etwa 103 Atome/m3.[48] In festen Himmelskörpern wie der Erde beträgt die Atomdichte etwa 1029 Atome/m3.

In der Verteilung der Elemente dominiert im Universum Wasserstoff mit rund drei Viertel der Masse, danach folgt Helium mit etwa einem Viertel. Alle schwereren Elemente sind viel seltener und machen nur einen kleinen Teil der im Universum vorhandenen Atome aus. Ihre Häufigkeiten werden von den verschiedenen Mechanismen der Nukleosynthese bestimmt.[49]

Im Sonnensystem sind Wasserstoff und Helium vorwiegend in der Sonne und den Gasplaneten enthalten. Dagegen überwiegen auf der Erde die schweren Elemente. Die häufigsten Elemente sind hier Sauerstoff, Eisen, Silicium und Magnesium. Der Erdkern besteht vorwiegend aus Eisen, während in der Erdkruste Sauerstoff und Silicium vorherrschen.

Bestandteile des Atoms

Die beiden Hauptbestandteile eines Atoms sind der Atomkern und die Atomhülle. Die Hülle besteht aus Elektronen. Sie trägt mit weniger als 0,06 Prozent zur Masse des Atoms bei, bestimmt aber dessen Größe und dessen Verhalten gegenüber anderen Atomen, wenn sie einander nahekommen. Der Kern besteht aus Protonen und Neutronen, ist im Durchmesser zehn- bis hunderttausendmal kleiner als die Hülle, enthält aber mehr als 99,9 Prozent der Masse des Atoms.

Atomkern

Hauptartikel: Atomkern

Aufbau

Die Bindungsenergie, die pro Nukleon aufgebracht werden muss, um den Kern vollständig in Nukleonen zu zerlegen, für die auf der Erde natürlich vorkommenden Kerne.

Die in einem Atom vorhandenen Protonen und Neutronen, zusammen auch als Nukleonen bezeichnet, sind aneinander gebundenen und bilden den Atomkern. Die Nukleonen zählen zu den Hadronen. Das Proton ist positiv geladen, das Neutron ist elektrisch neutral. Proton und Neutron haben einen Durchmesser von etwa 1,6 fm (Femtometer) und sind selber keine Elementarteilchen, sondern nach dem Standardmodell der Elementarteilchenphysik aus den punktförmigen Quarks aufgebaut. Jeweils drei Quarks binden sich durch die starke Wechselwirkung, die durch Gluonen vermittelt wird, zu einem Nukleon. Die starke Wechselwirkung ist darüber hinaus für den Zusammenhalt der Nukleonen im Atomkern verantwortlich, insbesondere ist die Anziehung bis zu etwa 2,5 fm Abstand deutlich stärker als die gegenseitige elektrische Abstoßung der Protonen.[50] Unterhalb von etwa 1,6 fm wird die starke Wechselwirkung der Hadronen jedoch stark abstoßend. Anschaulich gesprochen verhalten sich die Nukleonen im Kern also etwa wie harte Kugeln, die aneinander haften. Daher steigt das Volumen des Kerns proportional zur Nukleonenzahl (Massenzahl) $ A $. Sein Radius beträgt etwa $ 1{,}3{\sqrt[{3}]{A}} $ fm.

Der leichteste Atomkern besteht aus nur einem Proton. Mehrere Protonen stoßen sich zwar gemäß der Elektrostatik ab, können zusammen mit einer geeigneten Anzahl von Neutronen aber ein stabiles System bilden. Doch schon bei kleinen Abweichungen von dem energetisch günstigsten Zahlenverhältnis ist der Kern instabil und wandelt sich spontan um, indem aus einem Neutron ein Proton wird oder umgekehrt und die frei werdende Energie und Ladung als Betastrahlung abgegeben wird. Kerne mit bis zu etwa 20 Protonen sind nur bei einem Verhältnis von nahezu 1:1 von Neutronenzahl und Protonenzahl stabil. Darüber steigt in den stabilen Atomkernen das Verhältnis von 1:1 bis auf etwa 1,5:1, weil bei größeren Protonenzahlen wegen ihrer elektrostatischen Abstoßung die Anzahl der Neutronen schneller anwachsen muss als die der Protonen (Details siehe Tröpfchenmodell). Die Bindungsenergie liegt in stabilen Kernen (abgesehen von den leichtesten) oberhalb von 7 MeV pro Nukleon (siehe Abbildung) und übertrifft damit die Bindungsenergie der äußeren Elektronen der Atomhülle oder die chemische Bindungsenergie in stabilen Molekülen um das ca. 106-fache. Kerne mit bestimmten Nukleonenzahlen, die als Magische Zahl bezeichnet werden, beispielsweise Helium-4, Sauerstoff-16 oder Blei-208, sind besonders stabil, was mit dem Schalenmodell des Atomkerns erklärt werden kann.

Oberhalb einer Zahl von 82 Protonen (also jenseits von Blei) sind alle Kerne instabil. Sie wandeln sich durch Ausstoßen eines Kerns He-4 in leichtere Kerne um (Alphastrahlung). Dies wiederholt sich, zusammen mit Betastrahlung, so lange, bis ein stabiler Kern erreicht ist; mehrere Zerfallsstufen bilden eine Zerfallsreihe. Auch zu den Protonenzahlen 43 (Technetium) und 61 (Promethium) existiert kein stabiler Kern. Daher kann es insgesamt nur 80 verschiedene stabile chemische Elemente geben, alle weiteren sind radioaktiv. Sie kommen auf der Erde nur dann natürlich vor, wenn sie selber oder eine ihrer Muttersubstanzen eine genügend lange Halbwertzeit haben.

Masse

Da der Großteil der Atommasse von den Neutronen und Protonen stammt und diese etwa gleich schwer sind, wird die Gesamtzahl dieser Teilchen in einem Atom als Massenzahl bezeichnet. Die genaue Masse eines Atoms wird oft in der atomaren Masseneinheit u angegeben; ihr Zahlenwert ist dann etwa gleich der Massenzahl. Kleinere Abweichungen entstehen durch den Massendefekt der Atomkerne. Die atomare Masseneinheit ergibt sich aus der Definition der SI-Einheit des Mols in der Art und Weise, dass ein Atom des Kohlenstoffisotops 12C (im Grundzustand inklusive seiner Hüllenelektronen) eine Masse von exakt 12 u besitzt. Damit beträgt 1 u gleich 1,66053904 · 10−27 kg.[51] Ein Atom des leichtesten Wasserstoffisotops hat eine Masse von 1,007825 u. Das schwerste stabile Nuklid ist das Bleiisotop 208Pb mit einer Masse von 207,9766521 u.[52]

Da makroskopische Stoffmengen so viele Atome enthalten, dass die Angabe ihrer Anzahl als natürliche Zahl unhandlich wäre, erhielt die Stoffmenge eine eigene Einheit, das Mol. Ein Mol sind etwa 6,022 · 1023 Atome (oder auch Moleküle oder andere Teilchen; die betrachtete Teilchenart muss immer mitgenannt werden). Die Masse von 1 Mol Atomen der Atommasse X u ist daher exakt X g.[51] Daher ist es in der Chemie üblich, Atommassen statt in u auch indirekt in g/mol anzugeben.

Bildung und Zerfall

In welcher Art ein instabiler Atomkern zerfällt, ist für das jeweilige Radionuklid typisch. Bei manchen Nukliden können die (untereinander völlig gleichen) Kerne auch auf verschiedene Arten zerfallen, so dass mehrere Zerfallskanäle mit bestimmten Anteilen beteiligt sind. Die wichtigsten radioaktiven Zerfälle sind

  • Alpha-Zerfall, bei dem sich aus zwei Protonen und zwei Neutronen des Kerns durch die starke Wechselwirkung ein Helium-Atomkern bildet, der ausgestoßen wird,
  • Beta-Zerfall, bei dem mittels der schwachen Wechselwirkung ein Neutron des Kerns in ein Proton oder umgekehrt umgewandelt wird und ein Elektron und ein Antineutrino beziehungsweise ein Positron und ein Neutrino erzeugt und ausgesendet werden,
  • Gamma-Zerfall, bei dem ein angeregter Kern durch elektromagnetische Wechselwirkung Gammastrahlung erzeugt und in ein niedrigeres Energieniveau gelangt, bei gleichbleibender Protonen- und Neutronenzahl.
Illustration einer Kernfusion: ein Proton und ein Deuterium-Kern (oben) reagieren zu einem 3He-Kern, bestehend aus zwei Protonen und einem Neutron. Die bei der Reaktion frei werdenden Energie wird als Gammastrahlung abgestrahlt.

Die Energien der Strahlungen sind für das jeweilige Nuklid charakteristisch, ebenso wie die Halbwertszeit, die angibt, wie lange es dauert, bis die Hälfte einer Probe des Nuklids zerfallen ist.

Durch Anlagerung eines Neutrons kann sich ein Kern in das nächstschwerere Isotop desselben Elements verwandeln. Durch den Beschuss mit Neutronen oder anderen Atomkernen kann ein großer Atomkern in mehrere kleinere Kerne gespalten werden. Einige schwere Nuklide können sich auch ohne äußere Einwirkung spontan spalten.

Größere Atomkerne können aus kleineren Kernen gebildet werden. Dieser Vorgang wird Kernfusion genannt. Für eine Fusion müssen sich Atomkerne sehr nahekommen. Diesem Annähern steht die elektrostatische Abstoßung beider Kerne, der sogenannte Coulombwall, entgegen. Aus diesem Grund ist eine Kernfusion (außer in bestimmten Experimenten) nur unter sehr hohen Temperaturen von mehreren Millionen Grad und hohen Drücken, wie sie im Inneren von Sternen herrschen, möglich. Die Kernfusion ist bei Nukliden bis zum Nickel-62 eine exotherme Reaktion, so dass sie im Großen selbsterhaltend ablaufen kann. Sie ist die Energiequelle der Sterne. Bei Atomkernen jenseits des Nickels nimmt die Bindungsenergie pro Nukleon ab; die Fusion schwererer Atomkerne ist daher endotherm und damit kein selbsterhaltender Prozess. Die Kernfusion in Sternen kommt daher zum Erliegen, wenn die leichten Atomkerne aufgebraucht sind.[53]

Atomhülle

Hauptartikel: Atomhülle

Aufbau und Bindungsenergie

Die Atomhülle besteht aus Elektronen, die aufgrund ihrer negativen Ladung an den positiven Atomkern gebunden sind. Sie wird oft auch als Elektronenhülle bezeichnet. Bei einem neutralen Atom mit $ Z $ Elektronen beträgt die durchschnittliche Bindungsenergie je Elektron etwa $ 13{,}6\;Z^{4/3} $.[54] Sie nimmt daher mit steigender Teilchenzahl erheblich zu, im Gegensatz zur durchschnittlichen Bindungsenergie pro Nukleon im Kern, die ab der Massenzahl $ A=62 $ sogar abnimmt. Zur Erklärung wird angeführt, dass zwischen Nukleonen nur Bindungskräfte kurzer Reichweite wirken, die kaum über die benachbarten Teilchen hinausreichen, während die Hülle durch die elektrostatische Anziehungskraft gebunden ist, die vom $ Z $-fach geladenen Kern aus alle Elektronen erfasst.

Abgesehen von der Masse, die zu über 99,95 Prozent im Atomkern konzentriert ist, ist die Atomhülle für praktisch alle äußeren Eigenschaften des Atoms verantwortlich. Der Begriff Atommodell bezieht sich daher im engeren Sinn meist nur auf die Hülle (siehe Liste der Atommodelle). Ein einfaches Atommodell ist das Schalenmodell, nach dem die Elektronen sich in bestimmten Schalen um den Kern anordnen, in denen jeweils für eine bestimmte Anzahl Elektronen Platz ist. Allerdings haben diese Schalen weder einen bestimmten Radius noch eine bestimmte Dicke, sondern überlappen und durchdringen einander teilweise. Besser getrennt sind sie auf der Skala der Bindungsenergie der Elektronen.

Interpretation grundlegender Atomeigenschaften im Rahmen des Schalenmodells

Die Atomhülle bestimmt die Stärke und Abstandsabhängigkeit der Kräfte zwischen zwei Atomen. Im Abstandsbereich mehrerer Atomdurchmesser polarisieren sich die gesamten Atomhüllen wechselseitig, sodass durch elektrostatische Anziehung anziehende Kräfte, die Van-der-Waals-Kräfte, entstehen. Sie bewirken vor allem die Kondensation der Gase zu Flüssigkeiten, also einen Wechsel der Aggregatzustände.

Die (näherungsweise) Inkompressibilität der Flüssigkeiten und Festkörper hingegen beruht darauf, dass alle Atome bei starker Annäherung einander stark abstoßen, sobald sich ihre Hüllen im Raum merklich überschneiden und daher verformen müssen. Außer im Fall zweier Wasserstoff­atome, die jeweils nur ein Elektron in der Hülle haben, spielt die elektrostatische Abstoßung der beiden Atomkerne dabei nur eine geringe Rolle.

In einem mittleren Abstandsbereich zwischen dem Vorherrschen der schwach anziehenden Van-der-Waals-Kräfte und der starken Abstoßung kommt es zwischen zwei oder mehr zueinander passenden Atomhüllen zu einer besonders starken Anziehung, der chemischen Bindung. Bei Atomen bestimmter Elemente kann diese Anziehung zu einem stabilen Molekül führen, das aus Atomen in zahlenmäßig genau festgelegter Beteiligung und räumlicher Anordnung aufgebaut ist. Die Moleküle sind die kleinsten Stoffeinheiten der chemischen Verbindungen, also der homogenen Materialien in all ihrer Vielfalt. Vermittelt über die Hüllen ihrer Atome ziehen auch Moleküle einander an. Ein fester Körper entsteht, wenn viele Moleküle sich aneinander binden und dabei, weil es energetisch günstig ist, eine feste Anordnung einhalten. Ist diese Anordnung regelmäßig, bildet sich ein Kristallgitter. Infolge dieser Bindung ist der feste Körper nicht nur weitgehend inkompressibel wie eine Flüssigkeit, sondern im Unterschied zu dieser auch auf Zug belastbar und deutlich weniger leicht verformbar. Verbinden sich Atome metallischer Elemente miteinander, ist ihre Anzahl nicht festgelegt und es können sich nach Größe und Gestalt beliebige Körper bilden. Vor allem chemisch reine Metalle zeigen dann meist auch eine große Verformbarkeit. Verbindungen verschiedener Metalle werden Legierung genannt. Die Art der Bindung von Metallatomen erklärt, warum Elektronen sich fast frei durch das Kristallgitter bewegen können, was die große elektrische Leitfähigkeit und Wärmeleitfähigkeit der Metalle verursacht. Zusammengefasst ergeben sich aus der Wechselwirkung der Atomhüllen miteinander die mechanische Stabilität und viele weitere Eigenschaften der makroskopischen Materialien.

Aufgrund des unscharfen Randes der Atomhülle liegt die Größe der Atome nicht eindeutig fest. Die als Atomradien tabellierten Werte sind aus der Bindungslänge gewonnen, das ist der energetisch günstigste Abstand zwischen den Atomkernen in einer chemischen Bindung. Insgesamt zeigt sich mit steigender Ordnungszahl eine in etwa periodische Variation der Atomgröße, die mit der periodischen Variation des chemischen Verhaltens gut übereinstimmt. Im Periodensystem der Elemente gilt allgemein, dass innerhalb einer Periode, also einer Zeile des Systems, eine bestimmte Schale aufgefüllt wird. Von links nach rechts nimmt die Größe der Atome dabei ab, weil die Kernladung anwächst und daher alle Schalen stärker angezogen werden. Wenn eine bestimmte Schale mit den stark gebundenen Elektronen gefüllt ist, gehört das Atom zu den Edelgasen. Mit dem nächsten Elektron beginnt die Besetzung der Schale mit nächstkleinerer Bindungsenergie, was mit einem größeren Radius verbunden ist. Innerhalb einer Gruppe, also einer Spalte des Periodensystems, nimmt die Größe daher von oben nach unten zu. Dementsprechend ist das kleinste Atom das Heliumatom am Ende der ersten Periode mit einem Radius von 32 pm, während eines der größten Atome das Caesium­atom ist, das erste Atom der 5. Periode. Es hat einen Radius von 225 pm.[55]

Erklärung der Atomeigenschaften im Rahmen des Orbitalmodells

Die dem Schalenmodell zugrundeliegenden Elektronenschalen ergeben sich durch die Quantisierung der Elektronenenergien im Kraftfeld des Atomkerns nach den Regeln der Quantenmechanik. Um den Kern herum bilden sich verschiedene Atomorbitale, das sind unscharf begrenzte Wahrscheinlichkeitsverteilungen für mögliche räumliche Zustände der Elektronen. Jedes Orbital kann aufgrund des Pauli-Prinzips mit maximal zwei Elektronen besetzt werden, dem Elektronenpaar. Die Orbitale, die unter Vernachlässigung der gegenseitigen Abstoßung der Elektronen und der Feinstruktur theoretisch die gleiche Energie hätten, bilden eine Schale. Die Schalen werden mit der Hauptquantenzahl durchnummeriert oder fortlaufend mit den Buchstaben K, L, M,… bezeichnet. Genauere Messungen zeigen, dass ab der zweiten Schale nicht alle Elektronen einer Schale die gleiche Energie besitzen. Falls erforderlich, wird durch die Nebenquantenzahl oder Drehimpulsquantenzahl eine bestimmte Unterschale identifiziert.

Sind die Orbitale, angefangen vom energetisch niedrigsten, so weit mit Elektronen besetzt, dass die gesamte Elektronenzahl gleich der Protonenzahl des Kerns ist, ist das Atom neutral und befindet sich im Grundzustand. Werden in einem Atom ein oder mehrere Elektronen in energetisch höherliegende Orbitale versetzt, ist das Atom in einem angeregten Zustand. Die Energien der angeregten Zustände haben für jedes Atom wohlbestimmte Werte, die sein Termschema bilden. Ein angeregtes Atom kann seine Überschussenergie abgeben durch Stöße mit anderen Atomen, durch Emission eines der Elektronen (Auger-Effekt) oder durch Emission eines Photons, also durch Erzeugung von Licht oder Röntgenstrahlung. Bei sehr hoher Temperatur oder in Gasentladungen können die Atome durch Stöße Elektronen verlieren (siehe Ionisationsenergie), es entsteht ein Plasma, so z. B. in einer heißen Flamme oder in einem Stern.

Absorptionslinien im Spektrum der Sonne. Aus dem eingestrahlten Licht, das ein kontinuierliches Spektrum aufweist, wird bei bestimmten Wellenlängen Strahlung absorbiert, was die schwarzen Linien hervorruft.

Da die Energien der Quanten der emittierten Strahlung je nach Atom bzw. Molekül und den beteiligten Zuständen verschieden sind, lässt sich durch Spektroskopie dieser Strahlung die Quelle im Allgemeinen eindeutig identifizieren. Beispielsweise zeigen die einzelnen Atome ihr elementspezifisches optisches Linienspektrum. Bekannt ist etwa die Natrium-D-Linie, eine Doppellinie im gelben Spektralbereich bei 588,99 nm und 589,59 nm,[56] die auch in nebenstehender Abbildung mit D-1 bezeichnet wird. Ihr Aufleuchten zeigt die Anwesenheit von angeregten Natrium-Atomen an, sei es auf der Sonne oder über der Herdflamme bei Anwesenheit von Natrium oder seinen Salzen. Da diese Strahlung einem Atom auch durch Absorption dieselbe Energie zuführen kann, lassen sich die Spektrallinien der Elemente sowohl in Absorptions- als auch in Emissionsspektren beobachten. Diese Spektrallinien lassen sich auch verwenden, um Frequenzen sehr präzise zu vermessen, beispielsweise für Atomuhren.

Obwohl Elektronen sich untereinander elektrostatisch abstoßen, können in einem neutralen Atom zusätzlich bis zu zwei weitere Elektronen gebunden werden, wenn es bei der höchsten vorkommenden Elektronenenergie noch Orbitale mit weiteren freien Plätzen gibt (siehe Elektronenaffinität). Chemische Reaktionen, d. h. die Verbindung mehrerer Atome zu einem Molekül oder sehr vieler Atome zu einem Festkörper, werden dadurch erklärt, dass ein oder zwei Elektronen aus einem der äußeren Orbitale eines Atoms (Valenzelektronen) unter Energiegewinn auf einen freien Platz in einem Orbital eines benachbarten Atoms ganz hinüberwechseln (Ionenbindung) oder sich mit einer gewissen Wahrscheinlichkeit dort aufhalten (kovalente Bindung durch ein bindendes Elektronenpaar). Dabei bestimmt die Elektronegativität der Elemente, bei welchem Atom sich die Elektronen wahrscheinlicher aufhalten. In der Regel werden chemische Bindungen so gebildet, dass die Atome die Elektronenkonfiguration eines Edelgases erhalten (Edelgasregel). Für das chemische Verhalten des Atoms sind also Form und Besetzung seiner Orbitale entscheidend. Da diese allein von der Protonenzahl bestimmt werden, zeigen alle Atome mit gleicher Protonenzahl, also die Isotope eines Elements, nahezu das gleiche chemische Verhalten.

Nähern sich zwei Atome über die chemische Bindung hinaus noch stärker an, müssen die Elektronen eines Atoms wegen des Pauli-Prinzips auf freie, aber energetisch ungünstige Orbitale des anderen Atoms ausweichen, was einen erhöhten Energiebedarf und damit eine abstoßende Kraft nach sich zieht.

Wechselwirkung zwischen Kern und Hülle

Mit großer Genauigkeit wird die Wechselwirkung zwischen Kern und Hülle schon durch den einfachen Ansatz beschrieben, in dem der Kern eine punktförmige Quelle eines elektrostatischen Felds nach dem Coulomb-Gesetz darstellt. Alle genannten Atommodelle beruhen hierauf. Aufgrund zusätzlicher Effekte, die in erweiterten Modellen behandelt werden, sind nur extrem kleine Korrekturen nötig, die unter dem Namen Hyperfeinstruktur zusammengefasst werden. Zu berücksichtigen sind hier drei Effekte: erstens die endliche Ausdehnung, die jeder Kern besitzt, zweitens eine magnetische Dipolwechselwirkung, wenn sowohl Kern als auch Hülle eine Drehimpulsquantenzahl von mindestens ½ haben, und drittens eine elektrische Quadrupolwechselwirkung, wenn beide Drehimpulsquantenzahlen mindestens 1 sind.

Die endliche Ausdehnung des Kerns – verglichen mit einer theoretischen Punktladung – bewirkt eine schwächere Anziehung derjenigen Elektronen, deren Aufenthaltswahrscheinlichkeit bis in den Kern hineinreicht. Betroffen sind nur s-Orbitale (Bahndrehimpuls Null). Bei Atomen mittlerer Ordnungszahl liegt die Korrektur der Bindungsenergie in der Größenordnung von 1 Prozent. Die magnetischen Dipol- bzw. elektrischen Quadrupol-Momente von Hülle und Kern bewirken eine Kopplung mit der Folge, dass die Gesamtenergie eines freien Atoms je nach Quantenzahl seines Gesamtdrehimpulses äußerst geringfügig aufgespalten ist. Im H-Atom beträgt die Aufspaltung etwa ein Millionstel der Bindungsenergie des Elektrons (siehe 21-cm-Linie). Anschaulich gesprochen hängt die Energie davon ab, in welchem Winkel die Achsen der beiden magnetischen Dipolmomente bzw. elektrischen Quadrupolmomente von Kern und Hülle zueinander stehen.

Auch bei Atomen in Flüssigkeiten und Festkörpern machen sich diese Wechselwirkungen in entsprechend modifizierter Form bemerkbar. Trotz der Kleinheit der dadurch verursachten Effekte haben sie eine große Rolle in der Atom- und Kernforschung gespielt und sind in besonderen Fällen auch bei modernen Anwendungen wichtig.

Beobachtung

Indirekte Beobachtung

Indirekte Möglichkeiten, Atome zu erkennen, beruhen auf der Beobachtung der von ihnen ausgehenden Strahlung. So kann aus Atomspektren beispielsweise die Elementzusammensetzung entfernter Sterne bestimmt werden. Die verschiedenen Elemente lassen sich durch charakteristische Spektrallinien identifizieren, die auf Emission oder Absorption durch Atome des entsprechenden Elements in der Sternatmosphäre zurückgehen. Gasentladungslampen, die dasselbe Element enthalten, zeigen diese Linien als Emissionslinien.[57] Auf diese Weise wurde z. B. 1868 Helium im Spektrum der Sonne nachgewiesen – über 10 Jahre bevor es auf der Erde entdeckt wurde.[58]

Ein Atom kann ionisiert werden, indem eines seiner Elektronen entfernt wird. Die elektrische Ladung sorgt dafür, dass die Flugbahn eines Ions von einem Magnetfeld abgelenkt wird. Dabei werden leichte Ionen stärker abgelenkt als schwere. Das Massenspektrometer nutzt dieses Prinzip, um das Masse-zu-Ladung-Verhältnis von Ionen und damit die Atommassen zu bestimmen.

Die Elektronenenergieverlustspektroskopie misst den Energieverlust eines Elektronenstrahls bei der Wechselwirkung mit einer Probe in einem Transmissionselektronenmikroskop.

Beobachtung einzelner Atome

Ein mit einem Rastertunnelmikroskop erstelltes Bild einer rekonstruierten Goldoberfläche mit atomarer Auflösung.

Eine direkte Abbildung, die einzelne Atome erkennen lässt, wurde erstmals 1951 mit dem Feldionenmikroskop (oder Feldemissionsmikroskop) erzielt. Auf einem kugelförmigen Bildschirm, in dessen Mittelpunkt sich eine extrem feine Nadelspitze befindet, erscheint ein etwa millionenfach vergrößertes Bild. Darin sind die obersten Atome, die die Spitze bilden, nebeneinander als einzelne Lichtpunkte zu erkennen. Dies kann heute auch im Physikunterricht an der Schule vorgeführt werden. Das Bild entsteht in Echtzeit und erlaubt z. B. die Betrachtung der Wärmebewegung einzelner Fremdatome auf der Spitze.

Auch das Rastertunnelmikroskop ist ein Gerät, das einzelne Atome an der Oberfläche eines Körpers sichtbar macht. Es verwendet den Tunneleffekt, der es Teilchen erlaubt, eine Energiebarriere zu passieren, die sie nach klassischer Physik nicht überwinden könnten. Bei diesem Gerät tunneln Elektronen durch einen nur Nanometer breiten Spalt zwischen einer elektrisch leitenden Spitze und der elektrisch leitenden Probe. Bei Seitwärtsbewegungen zur Abrasterung der Probe wird die Höhe der Spitze so nachgeregelt, dass immer derselbe Strom fließt. Die Bewegung der Spitze bildet die Topographie und Elektronenstruktur der Probenoberfläche ab. Da der Tunnelstrom sehr stark vom Abstand abhängt, ist die laterale Auflösung viel feiner als der Radius der Spitze, manchmal atomar.[33][34]

Eine tomographische Atomsonde erstellt ein dreidimensionales Bild mit einer Auflösung unterhalb eines Nanometers und kann einzelne Atome ihrem chemischen Element zuordnen.[59]

Aufbauend auf einer um 2010 entwickelten Atom-Licht-Schnittstelle ist es 2020 gelungen, Fotos einzelner Atome zu machen, die weniger als einen Tausendstel Millimeter über einer lichtleitenden Glasfaser schweben. Dadurch ist es unter Laborbedingungen nun möglich, Effekte wie die Absorption und Aussendung von Licht kontrollierter als bisher zu untersuchen. Dies kann bei der Entwicklung neuartiger optischer Glasfaser-Netzwerke helfen.[60]

Literatur

  • Hans-Werner Kirchhoff: Vorstellungen vom Atom 1800–1934. Aulis Verlag Deubner, 2001, ISBN 3-7614-2300-4.
  • Richard Feynman, Robert B. Leighton, Matthew Sands: Vorlesungen über Physik. Band I–III. Oldenbourg, 1991.
  • Wolfgang Demtröder: Atome, Moleküle und Festkörper. 3. Auflage. Springer, 2005, ISBN 3-540-21473-9.
  • Richard Feynman: Six Easy Pieces. The Penguin Group, 1995, ISBN 0-14-027666-1.
  • Oskar Höfling, Pedro Waloschek: Die Welt der kleinsten Teilchen. Rowohlt, 1984, ISBN 3-498-02862-6.
  • Jeremy I. Pfeffer, Shlomo Nir: Modern Physics: An Introductory Text. Imperial College Press, 2000, ISBN 1-86094-250-4 (english).
  • Robert Siegfried: From Elements to Atoms: A History of Chemical Composition. In: Transactions of the Americal Philosophical Society. Band 92, Nr. 4. American Philosophical Society, 2002, ISBN 0-87169-924-9.
  • Werner Kutzelnigg: Einführung in die Theoretische Chemie. Wiley Chemie, 2002, ISBN 3-527-30609-9.
  • Dick Teresi: Lost Discoveries: The Ancient Roots of Modern Science-from the Babylonians to the Maya. Simon & Schuster, 2003, ISBN 0-7432-4379-X, S. 213–214.

Weblinks

Commons: Atoms – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Atom – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Dick Teresi: Lost Discoveries: The Ancient Roots of Modern Science--from the Babylonians to the Maya. Simon & Schuster, 2003, ISBN 0-7432-4379-X, S. 213–214.
  2. Leonid I. Ponomarev: The Quantum Dice. 2. Auflage. Inst. of Physics Pub, 1993, ISBN 0-7503-0251-8, S. 14–15.
  3. 3,0 3,1 Jörn Bleck-Neuhaus: Elementare Teilchen. Von den Atomen über das Standard-Modell bis zum Higgs-Boson. 2., überarbeitete Auflage. Springer, 2013, ISBN 978-3-642-32578-6, ISSN 0937-7433, doi:10.1007/978-3-642-32579-3.
  4. Robert Siegfried: From Elements to Atoms: A History of Chemical Composition. In: Transactions of the Americal Philosophical Society. Band 92, Nr. 4. American Philosophical Society, 2002, ISBN 0-87169-924-9, S. 42–55.
  5. Charles Kittel: Einführung in die Festkörperphysik. 7. Auflage 1988, Verlag R. Oldenbourg (München), S. 16.
  6. Lavoisier's Elements of Chemistry. In: Elements and Atoms. Le Moyne College, Department of Chemistry (english).
  7. Charles Adolphe Wurtz: The Atomic Theory. D. Appleton and company, New York 1881, S. 1–2.
  8. J. Dalton: A New System of Chemical Philosophy, Part 1. S. Russell, London/Manchester 1808.
  9. F. Dannemann: Die Naturwissenschaften in ihrer Entwicklung und in ihrem Zusammenhange. Bd. 3, Verlag W. Engelmann 1922, S. 198.
  10. Loschmidt: Zur Grösse der Luftmoleküle. In: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien. Band 52, 1866, Abt. II, S. 395–413.
  11. Albert Einstein: Eine neue Bestimmung der Moleküldimensionen. Bern 1905 (Online [PDF; abgerufen am 25. März 2014]).
  12. Albert Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. In: Annalen der Physik. Band 322, Nr. 8, 1905, S. 549–560, doi:10.1002/andp.19053220806 (PDF (Memento vom 18. März 2006 im Internet Archive) [abgerufen am 4. Februar 2007]). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (Memento vom 18. März 2006 im Internet Archive)
  13. Robert M. Mazo: Brownian Motion: Flucuations, Dynamics, and Applications. In: The International Series of Monographs on Physics. Band 112. Oxford University Press, 2002, ISBN 0-19-851567-7, S. 1–7.
  14. Y. K. Lee, Kelvin Hoon: Brownian Motion. Imperial College, London, 1995, archiviert vom Original am 18. Dezember 2007 (english).
  15. Christian Wiener: Erklärung des atomistischen Wesens des tropfbar flüssigen Körperzustandes und Bestätigung desselben durch die sogenannten Molekularbewegungen. In: Poggendorffs Annalen. Band 118, 1863, S. 79–94.
  16. G. Patterson: Jean Perrin and the triumph of the atomic doctrine. In: Endeavour. Band 31, Nr. 2, 2007, S. 50–53, doi:10.1016/j.endeavour.2007.05.003.
  17. The Nobel Foundation: J.J. Thomson. Nobelprize.org, 1906 (english).
  18. E. Rutherford: The Scattering of α and β Particles by Matter and the Structure of the Atom. In: Philosophical Magazine. Band 21, 1911, S. 669–688 (Scans [abgerufen am 2. März 2014]).
  19. Frederick Soddy, The Nobel Prize in Chemistry 1921. Nobel Foundation (english).
  20. Nagel, Miriam C.: Frederick Soddy: From Alchemy to Isotopes. In: Journal of Chemical Education. Band 59, Nr. 9, 1982, S. 739–740, doi:10.1021/ed059p739.
  21. Joseph John Thomson: Bakerian Lecture: Rays of Positive Electricity. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. Band 89, Nr. 607, 1913, S. 1–20 (royalsocietypublishing.org [PDF; abgerufen am 2. März 2014]).
  22. Francis W. Aston: The constitution of atmospheric neon. In: Philosophical Magazine. Band 39, Nr. 6, 1920, S. 449–455.
  23. James Chadwick: Nobel Lecture: The Neutron and Its Properties. Nobel Foundation, 12. Dezember 1935 (english).
  24. Niels Bohr, The Nobel Prize in Physics 1922, Nobel Lecture. The Nobel Foundation, 11. Dezember 1922 (english).
  25. Kevin Brown: The Hydrogen Atom. MathPages, 2007 (english).
  26. David M. Harrison: The Development of Quantum Mechanics. University of Toronto, März 2000 (english).
  27. Lise Meitner, Otto Robert Frisch: Disintegration of uranium by neutrons: a new type of nuclear reaction. In: Nature. Band 143, 1939, S. 239.
  28. Manfred Schroeder: Lise Meitner – Zur 125. Wiederkehr Ihres Geburtstages. (Online [abgerufen am 2. März 2014]). Online (Memento vom 19. Juli 2011 im Internet Archive)
  29. Sven Kullander: Accelerators and Nobel Laureates. The Nobel Foundation, 28. August 2001 (english).
  30. Staff: The Nobel Prize in Physics 1990. The Nobel Foundation, 17. Oktober 1990 (english).
  31. P. Domokos, J. Janszky, P. Adam: Single-atom interference method for generating Fock states. In: Physical Review. Band 50, 1994, S. 3340–3344, doi:10.1103/PhysRevA.50.3340.
  32. The Nobel Prize in Physics 1997. Nobel Foundation, 15. Oktober 1997 (english).
  33. 33,0 33,1 Marilyn Jacox, J. William Gadzuk: Scanning Tunneling Microscope. National Institute of Standards and Technology, November 1997 (english).
  34. 34,0 34,1 The Nobel Prize in Physics 1986. The Nobel Foundation (english, insbesondere der Nobel-Preis-Vortrag von G. Binnig und H. Rohrer).
  35. Jiwoong Park, et al.: Coulomb blockade and the Kondo effect in single-atom transistors. In: Nature. Band 417, Nr. 6890, 2002, S. 722–725, doi:10.1038/nature00791.
  36. G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra: The NUBASE evaluation of nuclear and decay properties. In: Nuclear Physics. A 729, 2003, S. 3–128, doi:10.1016/j.nuclphysa.2003.11.001 (english, in2p3.fr [PDF; abgerufen am 2. März 2014]).
  37. Eintrag zu Isotope. In: Römpp Online. Georg Thieme Verlag, abgerufen am {{{Datum}}}.
  38. Roger Barrett, Daphne Jackson, Habatwa Mweene: The Strange World of the Exotic Atom. In: New Scientist. Nr. 1728, 1990, S. 77–115 (Online [abgerufen am 2. März 2014]).
  39. Paul Indelicato: Exotic Atoms. In: Physica Scripta. T112, 2004, S. 20–26, doi:10.1238/Physica.Topical.112a00020.
  40. Barrett H. Ripin: Recent Experiments on Exotic Atoms. American Physical Society, Juli 1998 (Online [abgerufen am 2. März 2014]).
  41. G. Baur et al.: Production of antihydrogen. In: Physics Letters B. 368, Nr. 3, 1996, S. 251–258, doi:10.1016/0370-2693(96)00005-6; Preprint online.
  42. Craig J. Copi, David N. Schramm, Michael S Turner: Big-Bang Nucleosynthesis and the Baryon Density of the Universe. In: Science. Band 267, 1995, S. 192–199, doi:10.1126/science.7809624, PMID 7809624.
  43. Brian Abbott: Microwave (WMAP) All-Sky Survey. Hayden Planetarium, 30. Mai 2007, archiviert vom Original am 5. September 2008 (english).
  44. D. C. Knauth, S. R. Federman, David L. Lambert, P. Crane: Newly synthesized lithium in the interstellar medium. In: Nature. Band 405, 2000, S. 656–658, doi:10.1038/35015028.
  45. Michael Banks: Planck reveals 'almost perfect' universe. 21. März 2013 (english).
  46. Masataka Fukugita, James Peebles: The Cosmic Energy Inventory. 18. August 2004, arxiv:astro-ph/0406095 (english).
  47. Michael Richmond: The Interstellar Medium: Gas..
  48. Arthur F. Davidsen: Far-Ultraviolet Astronomy on the Astro-1 Space Shuttle Mission. In: Science. Band 259, Nr. 5093, 1993, S. 327–334, doi:10.1126/science.259.5093.327, PMID 17832344.
  49. A. G. W. Cameron: Abundances of the elements in the solar system. In: Space Science Reviews. Band 15, 1970, S. 121–146.
  50. Jeremy I. Pfeffer: Modern Physics: An Introductory Text. Imperial College Press, 2000, ISBN 1-86094-250-4, S. 330–336.
  51. 51,0 51,1 E.R. Cohen, et al.: Quantities, Units and Symbols in Physical Chemistry. 3. Auflage. IUPAC & RSC Publishing, 2008, ISBN 978-0-85404-433-7, S. 88, 92 (english, Online [PDF; abgerufen am 28. April 2014]). Online (Memento vom 11. Februar 2014 im Internet Archive)
  52. G. Audi, A. H. Wapstra, C. Thibault: The Ame2003 atomic mass evaluation (II). In: Nuclear Physics. A729, 2003, S. 337–676 (english, Online [abgerufen am 2. März 2014]).
  53. Wolfgang Demtröder: Experimentalphysik Bd. 4: Kern-,Teilchen- und Astrophysik. 3. Auflage. Springer, 2010, ISBN 978-3-642-01597-7, ISSN 0937-7433, S. 366–367, doi:10.1007/978-3-642-01598-4.
  54. Julian Schwinger: Thomas-Fermi model: The leading correction. In: Phys. Rev. A. Band 22, 1980, S. 1827–1832, doi:10.1103/PhysRevA.22.1827.
  55. Mark Winter: Covalent radius. (english).
  56. Yu. Ralchenko, A. E. Kramida, J. Reader: NIST Atomic Spectra Database. National Institute of Standards and Technology, Gaithersburg, MD, 2008 (Version 5).
  57. Jim Lochner, Meredith Gibb, Phil Newman: What Do Spectra Tell Us? NASA/Goddard Space Flight Center, 30. April 2007 (english).
  58. Mark Winter: Helium. WebElements, 2007 (english).
  59. Erwin W. Müller, John A. Panitz, S. Brooks McLane: The Atom-Probe Field Ion Microscope. In: Review of Scientific Instruments. Band 39, Nr. 1, 1968, ISSN 0034-6748, S. 83–86, doi:10.1063/1.1683116.
  60. Atome beim Fotoshooting. In: Pressemitteilung. Humboldt-Universität zu Berlin, 3. August 2020 (PDF).
Dieser Artikel wurde am 22. März 2014 in dieser Version in die Liste der exzellenten Artikel aufgenommen.

News mit dem Thema Atom

02.09.2022
Elektrodynamik | Festkörperphysik | Quantenphysik | Thermodynamik
Neues Fell für Schrödingers Katze
Ob Magnete oder Supraleiter: Materialien sind für ihre Eigenschaften bekannt, doch unter extremen Bedingungen können sich solche Eigenschaften spontan ändern.
01.08.2022
Quantenphysik | Teilchenphysik
Ein Molekül aus Licht und Materie
Mit Licht kann man Atome gezielt dazu bringen, einander gegenseitig anzuziehen.
12.05.2022
Quantenphysik
Quantensysteme und Bienenflug
Mehr als zwei Billiarden verschiedene Zustände kann ein Quantensystem mit nur 51 geladenen Atomen einnehmen.
21.04.2022
Festkörperphysik | Quantenphysik | Teilchenphysik
Das Rätsel ultrakurzer Solitonen-Moleküle
Stabile Pakete von Lichtwellen – sogenannte optische Solitonen – werden in Ultrakurzpuls-Lasern als eine Kette von Lichtblitzen ausgestrahlt.
17.03.2022
Festkörperphysik | Quantenphysik
Antiprotonen in Superflüssigkeit: ein neuer Weg für hochsensitive Messungen an Antimaterie
Ein Team von Wissenschaftlern am CERN hat bei hybriden Atomen aus Antimaterie und Materie ein überraschendes Verhalten entdeckt, wenn diese in supraflüssiges Helium eingetaucht werden.
10.03.2022
Astrophysik | Teilchenphysik
Kosmischer Teilchenbeschleuniger am Limit
Mit Spezialteleskopen haben Forschende so detailliert in einen kosmischen Teilchenbeschleuniger geblickt wie nie zuvor.
08.03.2022
Sonnensysteme | Astrobiologie
Bisher größtes Molekül in einer Planeten bildenden Scheibe entdeckt
Mit Hilfe des Atacama Large Millimeter/submillimeter Array (ALMA) in Chile haben Forscherinnen des Observatoriums Leiden in den Niederlanden zum ersten Mal Dimethylether in einer Planeten bildenden Scheibe nachgewiesen.
02.02.2022
Festkörperphysik | Quantenoptik
Kühlung von Materie aus Distanz
Forschende können zwei Quantensysteme über eine Distanz von einem Meter zu einem Regelkreis verbinden: In diesem Regelkreis wird das eine Quantensystem – eine vibrierende Membran – durch das andere Quantensystem – eine Wolke von Atomen – gekühlt.
20.12.2021
Milchstraße | Sterne
Ein gigantisches Band aus Rohmaterial für neue Sterne
Eine Gruppe von Astronominnen und Astronomen haben in der Milchstraße mit rund 3900 Lichtjahren eine der längsten bekannten Strukturen identifiziert, die fast ausschließlich aus atomarem Wasserstoffgas besteht.
10.12.2021
Teilchenphysik
Das Tetra-Neutron – Existenz eines lange gesuchten Teilchens belegt
Während alle Atome außer Wasserstoff aus Protonen und Neutronen zusammengesetzt sind, sucht die Physik seit 50 Jahren nach einem Teilchen, das aus zwei, drei oder vier Neutronen besteht.
08.11.2021
Teilchenphysik
Neue Einblicke in die Struktur des Neutrons
Sämtliche bekannte Atomkerne und damit fast die gesamte sichtbare Materie bestehen aus Protonen und Neutronen – und doch sind viele Eigenschaften dieser allgegenwärtigen Bausteine der Natur noch nicht verstanden.
29.11.2021
Optik | Quantenoptik
Nur durch Billiardstel Sekunden getrennt
Ultrakurze Lichtblitze dauern weniger als eine Billiardstel Sekunde und haben eine wachsende technologische Bedeutung.
15.10.2021
Sterne
Magentische Kräfte der Sonne: schnellere geladene Teilchen beobachtet
Protuberanzen schweben als riesige Wolken über der Sonne, gehalten von einem Stützgerüst aus magnetischen Kraftlinien, deren Fußpunkte in tiefen Sonnenschichten verankert sind.
06.10.2021
Elektrodynamik | Festkörperphysik
Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
27.05.2021
Quantenphysik
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
25.04.2021
Raumfahrt | Astrophysik | Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
19.03.2021
Festkörperphysik | Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
01.03.2021
Sonnensysteme | Teilchenphysik
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
01.03.2021
Akustik | Optik | Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich.
18.02.2021
Quantenphysik | Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
17.02.2021
Quantenoptik | Teilchenphysik
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
15.02.2021
Festkörperphysik | Teilchenphysik
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
25.01.2021
Elektrodynamik | Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen?
19.01.2021
Quantenoptik | Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
07.01.2021
Astrophysik | Relativitätstheorie
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage.
21.12.2020
Elektrodynamik | Teilchenphysik
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
04.11.2020
Festkörperphysik | Teilchenphysik
Neue Einblicke in die Entstehung und den Zerfall atomarer Cluster
Atomare Cluster sind Ansammlungen von wenigen Atomen des gleichen Elementes oder auch von Atomen weniger unterschiedlicher Elemente. Unter welchen Bedingungen bilden sich atomare Cluster?
03.11.2020
Teilchenphysik
Auf der Suche nach kohärenter Neutrino-Streuung
Mit dem CONUS-Neutrinodetektor wurde am Kernkraftwerk Brokdorf erstmals eine Obergrenze für vollständig kohärente Streuung von Neutrinos an Atomkernen bestimmt.
22.10.2020
Optik | Teilchenphysik | Thermodynamik
Auflösungsweltrekord in der Kryo-Elektronenmikroskopie
Eine entscheidende Auflösungsgrenze in der Kryo-Elektronenmikroskopie ist geknackt.
21.10.2020
Milchstraße | Teilchenphysik
Atomarer Wasserstoff als archäologischer Nachweis für die Geschichte der Milchstraße
Eine Gruppe von Astronomen unter der Leitung von Juan Soler vom MPIA hat ein komplexes Netzwerk aus Filamenten aus atomarem Wasserstoffgas gefunden, das die Milchstraße durchdringt.
13.10.2020
Quantenphysik | Quantenoptik
Meilenstein in der Quantenphysik: Physikern gelingt der kontrollierte Transport von gespeichertem Licht
Patrick Windpassinger und sein Team demonstrieren, wie sich in einer Wolke aus ultrakalten Atomen gespeichertes Licht über ein "optisches Förderband" transportieren lässt.
24.09.2020
Atomphysik | Teilchenphysik
Atombillard mit Röntgenstrahlen: Blick ins Innere von Molekülen
1921 erhielt Albert Einstein den Nobelpreis für Physik für seine Entdeckung, dass Licht quantisiert ist und als ein Strom von Lichtteilchen – Photonen – mit Materie wechselwirkt.
02.09.2020
Atomphysik
Atom blitzschnell angetippt
Wissenschaftler*innen aus Regensburg und Zürich haben einen faszinierenden Weg gefunden, ein Atom mit kontrollierten Kräften so schnell anzustoßen, dass sie damit die Bewegung eines einzelnen Moleküls in weniger als einer billionstel Sekunde choreografieren können.
16.07.2020
Quantenoptik | Teilchenphysik
Der leichteste Spiegel der Welt
Physiker haben einen optischen Spiegel entwickelt, der aus nur wenigen hundert Atomen besteht.
14.07.2020
Elektrodynamik | Quantenoptik | Teilchenphysik
Hammer-on – wie man Atome schneller schwingen lässt
Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben.
08.07.2020
Festkörperphysik | Teilchenphysik
Im Takt der Atome: Schwingungen von Atomen zur Kontrolle eines Phasenübergangs nutzen
Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde.
01.07.2020
Quantenoptik | Teilchenphysik
In das Innere der atomaren Materie blicken: Pikoskopie
Wissenschaftlern aus den Arbeitsgruppen von Professor E.
01.07.2020
Atomphysik | Klassische Mechanik
100 Femtonewton nachgewiesen - Das Gewicht eines 0,1 Billionstels einer Tafel Schokolade
Experimentalphysiker messen kleinste Kräfte in der Wechselwirkung zwischen einzelnen Atomen.
16.06.2020
Atomphysik | Quantenphysik
Der kleinste Motor der Welt
Ein Forschungsteam der Empa und der EPFL hat einen molekularen Motor entwickelt, der aus nur 16 Atomen besteht und sich zuverlässig in eine Richtung dreht.
09.06.2020
Festkörperphysik
Atome streicheln für Fortgeschrittene
Wie kann man Oberflächen möglichst sanft und zerstörungsfrei auf atomarer Skala abbilden?
02.06.2020
Elektrodynamik | Quantenphysik
Verbundene Nanodreiecke zeigen Weg zu magnetischen Kohlenstoff-Materialien
Graphen-Dreiecke von nur einigen Atomen Kantenlänge verhalten sich wie eigentümliche Quantenmagnete.
27.05.2020
Kernphysik
Radioaktive Moleküle eignen sich als Mini-Labore
Radioaktive Moleküle eignen sich als Miniatur-Laboratorien, mit denen sich grundlegende Eigenschaften von Elementarteilchen und Atomkernen studieren lassen – das ist das Ergebnis eines Experiments, über das ein internationales Forschungskonsortium in der aktuellen Ausgabe des Wissenschaftsmagazins „Nature“ berichtet.
25.05.2020
Elektrodynamik | Festkörperphysik
Verlustfreie Stromleitung an den Kanten
Atomar dünne Schichten eines Halbmetalls namens Wolframditellurid leiten Strom verlustfrei entlang enger eindimensionaler Kanäle an den Rändern.
07.05.2020
Quantenphysik | Teilchenphysik
Langlebiges pionisches Helium: exotische Materie erstmals experimentell nachgewiesen
Exotische Atome, in denen Elektronen durch andere subatomare Teilchen gleicher Ladung ersetzt werden, ermöglichen tiefe Einblicke in die Quantenwelt.
06.05.2020
Teilchenphysik
Kein Einfluss dunkler Materie auf die Kraft zwischen Atomkernen nachweisbar
Auch wenn der größte Teil des Universums aus dunkler Materie besteht, ist sehr wenig über sie bekannt.
06.05.2020
Quantenphysik
Quantensprung auf der Waage
Ein neuer Zugang zur Quantenwelt: Wenn ein Atom beim Quantensprung eines Elektrons Energie aufnimmt oder abgibt, wird es schwerer oder leichter.
01.05.2020
Festkörperphysik | Quantenphysik
Der richtige Abstand für eine ideale Beziehung
Regensburger Physiker maßschneidern die Bindung von Elektron-Loch-Paaren in atomar dünnen Kristallen und erleichtern damit die Suche nach neuen Quantenmaterialien.
27.04.2020
Festkörperphysik
Untersuchung der Entstehung von „metallischem Glas“ widerlegt jahrzehntealtes Paradigma der Glasforschung
Metallische Gläser sind Legierungen, die bei schnellem Abkühlen nicht kristallisieren.
27.04.2020
Elektrodynamik | Quantenphysik
Experiment zur Quantenelektrodynamik
Die fundamentalen Gesetze der Physik basieren auf Symmetrien, die unter anderem die Wechselwirkungen zwischen geladenen Teilchen bestimmen.
24.04.2020
Elektrodynamik | Quantenoptik
Vermessung der Dynamik von Skyrmionen aus Licht auf ultraglatten Goldplättchen
Im Zentrum eines Wirbels bestehen sehr hohe Drehgeschwindigkeiten, die bei großen Tornados gewaltige Zerstörungskräfte entfalten können.
14.04.2020
Teilchenphysik
Teilchen-Billard mit drei Partnern: Frankfurter Forscher lösen Rätsel um Compton-Effekt
Mit Licht lassen sich Elektronen aus Atomen herausschlagen, dabei prallen Lichtteilchen und Elektronen wie zwei Billardkugeln voneinander ab – der Compton-Effekt.
06.04.2020
Elektrodynamik | Quantenoptik
Wenn Ionen an ihrem Käfig rütteln
In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung.
02.03.2020
Rechts, links, Bananenflanke: Mit chiralem Licht die Elektronenkrümmung in atomaren Schichten messen
Ein internationales Forschungsteam aus der Schweiz, Deutschland und den USA hat gezeigt, dass die Berry-Krümmung – eine wichtige Eigenschaft von Quantenmaterialien – mit chiralem Licht abgebildet werden kann.
26.02.2020
Wie groß das Neutron ist
Die Größe von Neutronen ist nicht direkt messbar: Man kann sie nur aus Experimenten mit anderen Teilchen bestimmen.
25.02.2020
Plasmonen im atomaren Flachland
Forscher vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg und dem Lawrence Berkeley National Laboratory (LBNL) in den USA haben eine grundlegend neue Art von quantenelektronischen Schwingungen, oder Plasmonen, in atomar dünnen Materialien entdeckt.
14.02.2020
Mit neuer Technik im extrem-ultravioletten Lichtbereich beobachten Forschende Quanteninterferenzen in Echtzeit
Einem Team um Prof.
04.02.2020
Studie: Einzelnes Atom als Messsonde nutzt erstmals Quanteninformationen
Sensoren erfassen bestimmte Parameter wie Temperatur und Luftdruck in ihrer Umgebung.
29.01.2020
Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen
Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt.
29.01.2020
Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht
Kein Volumen, nicht einmal Fläche: Ein eindimensionales Material ist wie ein Draht und hat Eigenschaften, die ganz anders sind als bei seiner 3D-Variante.
07.01.2020
Ein Quantenzeiger für die Laseruhr
Elektronen bewegen sich extrem schnell, Atomkerne sind deutlich träger.
23.12.2019
2D-Materialien: Anordnung der Atome in Silicen gemessen
Silicen besteht aus einer einzigen Schicht von Siliziumatomen.
05.12.2019
Mit starken Lasern zur Fusion: HZDR-Wissenschaftler wollen die Verschmelzung von Atomkernen quantenmechanisch anstoßen
Kernphysik ist üblicherweise die Domäne hoher Energien.
19.11.2019
Eine Fernsteuerung für alles Kleine
Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren.
19.11.2019
Atome hüpfen nicht gerne Seil
Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien.
11.11.2019
Magnetisches Tuning auf der Nanoskala
Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow.
05.11.2019
Verzerrte Atome
Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen.
04.11.2019
Rastertunnelmikroskop zeigt Magnetismus in atomarer Auflösung
Wissenschaftler aus Frankreich, Spanien und Deutschland haben einen Durchbruch bei der Vermessung magnetischer Strukturen erzielt.
04.11.2019
Gedächtniseffekt auf Einzelatom-Ebene
Eine internationale Forschungsgruppe hat an einem künstlichen Riesenatom neue Quanteneigenschaften beobachtet und ihre Ergebnisse nun im hochrangigen Fachjournal Nature Physics veröffentlicht.
21.10.2019
Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen.
21.10.2019
Atombilder zeigen ungewöhnlich viele Nachbarn für einige Sauerstoffatome
Das Identifizieren neuer chemischer Bindungen ist entscheidend für das Entwickeln neuer Materialstrukturen.
10.10.2019
Molekülarchitekturen aus Atomen modelliert – neuer Vorschlag zur analogen Simulation von Quantenchemie
Ein globales Team an Wissenschaftlern entwickelt die erste Blaupause zur exakten Berechnung molekularer Chemie mittels eines analogen Quantensimulators.
07.10.2019
Einstein auf den Prüfstand gestellt
Albert Einstein gilt als einer der Gründungsväter der modernen Physik.
23.09.2019
2.000 Atome an zwei Orten gleichzeitig
Das Prinzip der Quantenüberlagerung wurde in einer neuen Studie von Wissenschaftlern der Universität Wien in Zusammenarbeit mit der Universität Basel, in einem bisher unerreichten Maßstab getestet.
12.09.2019
Anfängliche Abstoßung schließt spätere Anziehung nicht aus
Regensburger Physiker messen erstmals direkt den Übergang von einer schwachen Bindung (Physisorption) in eine starke Bindung (Chemisorption) am Beispiel eines Kohlenstoffmonoxid-Moleküls und eines Eisenatoms.
12.09.2019
Meilensteine auf dem Weg zur Atomkern-Uhr
Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht.
02.09.2019
Einzelne Atome als Katalysatoren
Indem man einzelne Metallatome auf passende Weise in eine Oberfläche einbaut, lässt sich ihr chemisches Verhalten anpassen.
23.08.2019
Eine Vakuum-Falle für Elektronen-Spins auf der atomaren Skala
Physiker der Universität Hamburg haben ein spinauflösendes Elektronen-Interferometer entwickelt.
07.08.2019
Anatomie einer kosmischen Möwe
Diese farbenfrohe und faszinierende Ansammlung von Objekten ist bekannt als der Möwennebel, benannt nach seiner Ähnlichkeit mit einer Möwe im Flug.
08.07.2019
Atom-Manipulationen spielerisch entdecken
Online-Simulationsspiel macht Graphenforschung zugänglich.
25.06.2019
Einzelne Atome im Visier
Mit der NMR-Spektroskopie ist es in den letzten Jahrzehnten möglich geworden, die räumliche Struktur von chemischen und biochemischen Moleküle zu erfassen.
13.06.2019
Neues Quantenpunkt-Mikroskop zeigt die elektrischen Potenziale einzelner Atome
Ein Forscherteam aus Jülich hat in Kooperation mit der Universität Magdeburg eine neue Methode entwickelt, mit der sich die elektrischen Potenziale einer Probe atomgenau vermessen lassen.
24.05.2019
Direkte Abbildung von Riesenmolekülen
Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.
23.05.2019
Geometrie eines Elektrons erstmals bestimmt
Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht.
13.05.2019
Größe von Bor-Isotopen bestimmt - Forschung zwischen Kern- und Atomphysik
In einem Experiment an der TU Darmstadt ist es erstmals gelungen, winzige Größenunterschiede zwischen stabilen Bor-Isotopen zu bestimmen.
07.05.2019
Neuartiges Material zeigt auch neue Quasiteilchen
Forschende des PSI haben ein neuartiges kristallines Material untersucht, das bislang nie gesehene elektronische Eigenschaften zeigt.
02.05.2019
Zufall hilft Forschern: Eckpfeiler der Physik muss ergänzt werden
Atomkerne und Elektronen in Festkörpern beeinflussen sich gegenseitig in ihren Bewegungen – und das nicht nur in seltenen Ausnahmefällen, wie bisher angenommen.
25.04.2019
Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur
Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen.
24.04.2019
Forscher beobachten langsamsten je gemessenen Atomzerfall
Eigentlich soll der XENON1T-Detektor tief im Untergrund Teilchen der Dunklen Materie aufspüren.
24.04.2019
Frustrierte Materialien unter Hochdruck
Nicht nur Menschen leiden ab und an unter Frust.
23.04.2019
Quantenmaterie fest und supraflüssig zugleich
Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet.
17.04.2019
Erster astrophysikalischer Nachweis des Heliumhydrid-Ions
Das Heliumhydrid-Ion HeH+ war das erste Molekül, das im noch jungen Universum vor ca.
13.03.2019
Test der Symmetrie der Raumzeit mit Atomuhren
Der Vergleich zweier optischer Atomuhren bestätigt ihre hohe Genauigkeit und eine Grundannahme der Relativitätstheorie.
01.03.2019
Nanopartikel beeinflussen ihre flüssige Umgebung: Bayreuther Studie präsentiert atomare Einblicke
Fein verteilte Nanopartikel in einer Lösung werden heute in vielen Bereichen eingesetzt – beispielsweise in kosmetischen Produkten, als Katalysatoren in der Industrie oder als Kontrastmittel bei medizinischen Untersuchungen.
22.02.2019
Der Zeit atomarer Vorgänge auf der Spur
Einen wichtigen Beitrag zur Messung ultrakurzer atomarer Vorgänge haben Physiker am Heidelberger Max-Planck-Institut für Kernphysik geliefert.
12.02.2019
Ungewöhnliche Symmetrie: Physiker kontrollieren Elektronen mit ultraschnellen Laserpulsen
Symmetrien sind in der Natur allgegenwärtig – etwa die Spiegelsymmetrie der Hände oder die sechszählige Symmetrie einer Schneeflocke.
31.01.2019
Klassische Mechanik
Meteoriteneinschläge im Labor - Simulationsexperimente zeigen Strukturänderung von Mineralien
Ein deutsch-amerikanisches Forschungsteam hat Meteoriteneinschläge im Labor simuliert und die resultierenden Strukturänderungen in zwei weit verbreiteten Feldspat-Mineralien live mit Hilfe von Röntgenlicht verfolgt.
23.01.2019
Quantenphysik | Teilchenphysik
Studie: Zusammenstoß einzelner Atome führt zu zweifacher Änderung des Drehimpulses
Dank neuer Technik ist es möglich, einzelne Atome festzuhalten, gezielt zu bewegen oder ihren Zustand zu verändern.
16.01.2019
Quantenphysik
Fliegende optische Katzen für die Quantenkommunikation
Gleichzeitig tot und lebendig?
14.01.2019
Elektrodynamik
5000 mal schneller als ein Computer
Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom.
08.01.2019
Quantenphysik
Dissonanzen in der Quantenschwingung
Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.
17.12.2018
Klassische Mechanik | Teilchenphysik
Wenn sich Atome zu nahe kommen
„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden.
17.12.2018
Teilchenphysik
Datenspeicherung mit einzelnen Molekülen
Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt.
03.12.2018
Festkörperphysik | Teilchenphysik
Die Kraft des Vakuums
Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben mit theoretischen Berechnungen und Computersimulationen gezeigt, dass in atomar dünnen Schichten eines Supraleiters durch virtuelle Photonen die Kraft zwischen Elektronen und Gitterverzerrungen kontrollieren lässt.
28.11.2018
Optik | Teilchenphysik
Ein Jet von Atomen – Erste Linse für extrem ultraviolettes Licht entwickelt
Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben die erste refraktive Linse entwickelt, die extrem ultraviolette Strahlen fokussiert.
28.11.2018
Teilchenphysik
Supermikroskop beobachtet Lithium-Atome auf Wanderschaft - Einblicke in Minibatterie aus Graphen
Man kann es schlicht und einfach eine Sensation nennen, was hier Wissenschaftlern aus Stuttgart, Ulm und Dresden gelungen ist.
13.11.2018
Festkörperphysik
Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt
Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.
09.11.2018
Quantenphysik
Wenn sich unterschiedliche Systeme gleich verhalten
Unterschiedliche physikalische Systeme – in sich abgeschlossen und fern des Gleichgewichts – können sich vergleichbar verhalten.
31.10.2018
Optik | Teilchenphysik
Zeitmessung ohne Stoppuhr
Volle Zeitabhängigkeit der Antwort eines Atoms auf starke Laserfelder durch Spektralanalyse extrahiert.
30.10.2018
Quantenphysik | Quantenoptik
Rydberg-Systeme als neue Plattform für Optische Quantenkommunikation und Quantennetzwerke
Durchbruch in der Quantenforschung: Mit elektromagnetisch induzierter Transparenz lassen sich starke Wechselwirkungen von Rydberg-Atomen auf Licht übertragen.
29.10.2018
Quantenoptik
Kleinste Lichtportionen auf Knopfdruck: Uni Stuttgart entwickelt neuartige Einzelphotonenquelle
Forschende des Zentrums für Integrierte Quantenwissenschaft und -technologie Baden-Württemberg IQST am 5.
18.10.2018
Quantenoptik | Teilchenphysik
Die Erforschung ultrakalter Atome im Raketen-Labor
Wissenschaftler der Leibniz Universität Hannover veröffentlichen erste Ergebnisse von MAIUS-1, einer der komplexesten je durchgeführten Raketenmissionen.
02.10.2018
Quantenphysik | Teilchenphysik
Durchbruch in der Quantenphysik: Reaktion von Quantenfluid auf Fotoanregung gelöster Teilchen
Forscher der TU Graz beschreiben in Nature Communications den Prozess, der innerhalb einer Billionstel Sekunde in einem suprafluiden Heliumtröpfchen abläuft, wenn in dessen Inneren ein Atom fotodynamisch angeregt wird.
01.10.2018
Galaxien | Teilchenphysik
Das glimmende Universum
Mit dem MUSE-Spektrographen am Very Large Telescope der Europäischen Südsternwarte (ESO) entdeckten Wissenschaftlerinnen und Wissenschaftler riesige kosmische Reservoirs von atomarem Wasserstoff, die ferne Galaxien umgeben.
01.10.2018
Quantenphysik | Teilchenphysik
Studie: Atomare Verunreinigung ähnlich wie bei Edelsteinen dient als Quanten-Informationsspeicher
Für die Farben von Edelsteinen oder die Leistungsfähigkeit moderner Halbleiter sind Verunreinigungen in Materialien ursächlich.
25.09.2018
Teilchenphysik
Kupfer-Aluminium-Superatom
Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms.
18.09.2018
Plasmaphysik | Quantenoptik
Extrem klein und schnell: Laser zündet heißes Plasma
Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab.
15.09.2018
Elektrodynamik | Teilchenphysik
Schaltung des Stromflusses auf atomarer Skala
Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.
31.08.2018
Teilchenphysik
Atomen und Elektronen bei der Arbeit zugeschaut
Kieler Schichtkristalle dienen weltweit als Grundlage zur Erforschung des Nanokosmos.
25.07.2018
Astrophysik | Teilchenphysik
Material aus dem PSI hilft, Ungereimtheiten in der Urknalltheorie zu überprüfen
Kurz nach dem Urknall entstanden unter anderem radioaktive Atome des Typs Beryllium-7.
16.07.2018
Elektrodynamik | Festkörperphysik
Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen
„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin.
09.07.2018
Teilchenphysik
Wie sich einzelne Atome mit Elektronenstrahl steuern lassen
Forscher kontrollieren Siliziumbewegung in Graphen.
28.06.2018
Quantenoptik | Teilchenphysik
Ein einzelnes Atom vermittelt starke Wechselwirkungen zwischen Lichtquanten
Physiker am MPQ in Garching beobachten in einem Atom-Resonator-System starke Wechselwirkungen zwischen verschiedenfarbigen Photonen.
27.06.2018
Quantenoptik | Teilchenphysik
Nobelium im Laserlicht
Die Größe und Form künstlich hergestellter Atomkerne mit mehr als 100 Protonen war experimentell bisher nicht direkt zugänglich.
21.06.2018
Elektrodynamik | Teilchenphysik
Wärmestrahlung bei kleinsten Teilchen
Wissenschaftlern aus Greifswald und Heidelberg ist es gelungen, zeitaufgelöste Messungen der inneren Energieverteilung gespeicherter Clusteranionen durchzuführen.
13.06.2018
Teilchenphysik
Kaiserslauterer Physiker verändern atomare Wechselwirkung in ultrakalter Materie
Physikern der Technischen Universität Kaiserslautern (TUK) um Professor Dr.
07.06.2018
Teilchenphysik
Neue Wege in die „Terra incognita“ der Nuklidkarte
Hochpräzise Massenmessungen an neutronenreichen Chromisotopen: Ein wichtiger Schritt zur Erforschung bisher unbekannter Atomkerne ist Physikern des MPI für Kernphysik und der Universität Greifswald in einer internationalen Kollaboration am CERN gelungen.
04.06.2018
Quantenphysik
Quanteninformation mit Schall übertragen
Wie lässt sich Quanteninformation von einem Atom zum anderen übertragen?
30.05.2018
Teilchenphysik
Mikroskopisches Universum gibt Einblick in Leben und Tod des Neutrons
Experimente zur Lebensdauer eines Neutrons zeigen verblüffende und unerklärte Abweichungen.
17.05.2018
Quantenoptik | Teilchenphysik
Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom?
15.05.2018
Quantenphysik
Verschränkte Atome leuchten im Gleichklang
Einem Team um Experimentalphysiker Rainer Blatt ist es gelungen, die Quantenverschränkung zweier räumlich getrennter Atome durch die Beobachtung ihrer Lichtemission zu charakterisieren.
11.05.2018
Festkörperphysik | Teilchenphysik
Physiker haben den Dreh mit den zweidimensionalen Kristallen raus
Regensburger Physiker untersuchen in einem internationalen Team atomar dünne Heterostrukturen.
08.05.2018
Teilchenphysik | Thermodynamik
Ultra-kalte Atomwolken bringen bestehende Theorien ins Wanken
Experimente mit ultra-kalten Atomen brachten an der TU Wien unerwartete Ergebnisse: Atomwolken, die miteinander gekoppelt sind, synchronisieren ihre Schwingung in Millisekunden – mit bestehenden Theorien ist das nicht erklärbar.
02.05.2018
Teilchenphysik | Thermodynamik
Mehr als nur Zuschauer
Physikteam der Uni Kiel erforscht Einfluss von Ionen auf atomare Bewegung.
26.04.2018
Quantenphysik | Statistische Physik | Teilchenphysik
Einstein-Podolsky-Rosen-Paradoxon erstmals in Vielteilchensystem beobachtet
Physiker der Universität Basel haben das quantenmechanische Einstein-Podolsky-Rosen Paradoxon erstmals in einem System aus mehreren hundert miteinander wechselwirkenden Atomen beobachtet.
18.04.2018
Optik | Teilchenphysik
Auf dem Weg zur optischen Kernuhr
Wissenschaftler aus Braunschweig, München, Darmstadt und Mainz berichten in "Nature" über einen Weg, eine Laseranregung des Thorium-229-Atomkerns zu kontrollieren und somit eine optische Kernuhr zu realisieren, die genauer „tickt“ als heutige Atomuhren.
16.04.2018
Teilchenphysik
Freigesetzt lassen sich Elektronen besser fangen
Forscher der UNIGE und des MBI in Berlin haben erstmalig ein Elektron in einen Doppelzustand versetzt, in dem es weder ganz frei, noch an den Atomkern gebunden ist.
16.04.2018
Quantenphysik | Teilchenphysik
Ein atomares Quantenbit schaltbar gemacht
Ein Bit pro Atom: Augsburger Physiker erreichen gemeinsam mit US-amerikanischen Kollegen das wohl ultimative Limit für einen nanoskaligen Datenspeicher.
13.04.2018
Teilchenphysik
Einzelne Fremdatome in Graphen nachweisbar
Einem Team mit Physikern der Universität Basel ist es gelungen, einzelne Fremdatome in Graphenbändern mithilfe der Rasterkraftmikroskopie eindeutig abzubilden.
10.04.2018
Festkörperphysik
Neue Methode für Einblicke in Wechselwirkungen zwischen Molekülen / Atomar definierte Mess-Spitze
Nanowissenschaftler der WWU zeigen nun in einer im Fachmagazin „Nature Nanotechnology“ veröffentlichten Studie, wie die Strukturen organischer Moleküle mit ungeahnter Genauigkeit sichtbar gemacht werden können.
09.04.2018
Optik | Teilchenphysik
Das Hochleistungsmikroskop am Bungee-Seil
Wenn man einzelne Atome abbilden will, darf das Mikroskop nicht wackeln.
04.06.2018
Elektrodynamik
Atomare Untersuchungen verbessern Verständnis der Elektrokatalyse
Elektrokatalyse ist ein aus der Industrie nicht wegzudenkender Prozess um elektrische Energie direkt in chemische Energie umzuwandeln.
05.04.2018
Festkörperphysik
Neuer Weg zu atomar dünnen Materialien
Weg mit dem Silizium: Titancarbid-Nanoplättchen aus Titansiliziumcarbid durch selektives Ätzen.
26.02.2018
Teilchenphysik
Exotischer Materiezustand: Wie ins Atom noch mehr Atome passen
Ein neuartiger Materiezustand wurde mit TU Wien-Beteiligung nachgewiesen: Ein Elektron umkreist seinen Atomkern in großem Abstand, innerhalb dieser Bahn werden viele weitere Atome gebunden.
26.02.2018
Teilchenphysik
Vorstoß ins Innere der Atome
Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren.
11.07.2017
Quantenphysik | Teilchenphysik
Kohlenstoff zeigt Quanteneffekte
Chemiker der Ruhr-Universität Bochum haben einen neuen Beleg dafür gefunden, dass sich Kohlenstoffatome nicht nur wie Teilchen, sondern auch wie Wellen verhalten können.
03.07.2017
Teilchenphysik
Physiker beobachten erstmals einzelne Zusammenstöße von Atomen bei Diffusion
Unter Diffusion versteht die Forschung einen Vorgang, bei dem sich kleinste Teilchen in einem Gas oder einer Flüssigkeit gleichmäßig ausbreiten.
30.06.2017
Teilchenphysik
Atomen beim Wettstreit um Bindungen zugeschaut
Auf atomarer Ebene beobachten Innsbrucker Physiker und Chemiker um Roland Wester im Labor komplexe chemische Reaktionen.
30.06.2017
Teilchenphysik
Neue Einblicke in die Kraft, die Atomkerne zusammenhält
Mit Computersimulationen haben Physiker neue Einblicke in die starke Kraft erhalten, die Protonen und Neutronen im Atomkern zusammenhält.
30.06.2017
Astrophysik | Quantenphysik | Relativitätstheorie
Einsteins Äquivalenzprinzip besteht einen echten Quantentest
Einsteins Äquivalenzprinzip ist für das Verständnis der Gravitation und der relativistischen Raumzeit von fundamentaler Bedeutung.
30.06.2017
Astrophysik | Teilchenphysik
Röntgenblitze erzeugen „molekulares Schwarzes Loch“
Mit einem ultraintensiven Röntgenblitz haben Forscher ein einzelnes Atom in einem Molekül kurzzeitig in eine Art elektromagnetisches ‚Schwarzes Loch‘ verwandelt.
30.06.2017
Astrophysik | Elektrodynamik | Quantenphysik | Teilchenphysik
Atom- und Molekülspektren im extremen Magnetfeld von Weißen Zwergen werden berechenbar
Neue quantenchemische Methode schafft Grundlagen zur Identifikation von Atomen und Molekülen im Magnetfeld von Weißen Zwergen.
20.09.2016
Teilchenphysik
Überraschender Einblick in die Welt der Atomkerne
Wie fügen sich Neutronen und Protonen zu Atomkernen zusammen?
01.05.2016
Quantenphysik | Teilchenphysik
Das Atom ohne Eigenschaften
Die Welt der kleinsten Teilchen folgt den Regeln der Quantenmechanik.

Die News der letzten Tage

25.09.2022
Kometen_und_Asteroiden | Sonnensysteme
Untersucht: Bodenproben des Asteroiden Ryugu
Ein internationales Forschungsteam hat Bodenproben untersucht, die die japanische Raumsonde Hayabusa-2 auf dem Asteroiden Ryugu einsammelte.
22.09.2022
Milchstraße | Schwarze Löcher
Eine heiße Gasblase, die um das schwarze Loch der Milchstraße schwirrt
Mit Hilfe des Atacama Large Millimeter/Submillimeter Array (ALMA) haben Astronomen Anzeichen für einen „heißen Fleck“ entdeckt, der Sagittarius A*, das schwarze Loch im Zentrum unserer Galaxie, umkreist.
22.09.2022
Festkörperphysik | Quantenphysik | Teilchenphysik
Kernstück für einen skalierbaren Quantencomputer
Millionen von Quantenbits sind nötig, damit Quantencomputer sich in der Praxis als nützlich erweisen, die sogenannte Skalierbarkeit gilt als eine der größten Herausforderungen bei der Entwicklung.
22.09.2022
Optik | Quantenoptik
Zwischen Erfurt und Jena: Erstmals erfolgreich Quantenschlüssel via Glasfaser ausgetauscht
Das ist ein Meilenstein für die Erforschung der hochsicheren Quantenkommunikation in Thüringen und Deutschland.
22.09.2022
Festkörperphysik | Thermodynamik
Molekülschwingungen schärfer denn je messbar!
Mit Rastertunnelmikroskopen lassen sich zwar einzelne Moleküle abbilden, ihre Schwingungen waren damit bisher aber nur schwer detektierbar.
20.09.2022
Festkörperphysik | Quantenphysik
Neue Quantenmaterialien am Computer entworfen
Eine neues Designprinzip kann nun die Eigenschaften von bisher kaum erforschbaren Quantenmaterialien vorhersagen.
19.09.2022
Sterne
Stern-Kindheit prägt stellare Entwicklung
In klassischen Modellen zur Sternentwicklung wurde bis heute der frühen Evolution der Sterne wenig Bedeutung zugemessen.