Atommasse

Die Atommasse, die Masse eines einzelnen Atoms, kann wie jede Masse in der SI-Einheit Kilogramm (kg) angegeben werden. In der Regel wird die Masse $ m $ eines Atoms aber in atomaren Masseneinheiten $ \mathrm {u} $ ausgedrückt,

$ m=A_{u}\;\mathrm {u} . $

Es ist $ 1\,\mathrm {u} =1.660\ 539\ 066\ 60(50)\times 10^{-27}\ \mathrm {kg} $, wobei die eingeklammerte Zahl 50 die derzeitige Messunsicherheit der beiden letzten angegebenen Dezimalstellen angibt.

Die Einheit $ \mathrm {u} $, früher mit $ \mathrm {amu} $ (atomic mass unit) bezeichnet, ist ein Zwölftel der Masse eines Atoms des Kohlenstoff-Isotops 12C. Sie ist damit ca. 8‰ kleiner als die Masse eines Wasserstoffatoms 1H. Die Wahl gerade dieser Größe ist u. a. dadurch motiviert, dass dann die Zahlenwerte $ A_{u} $ für alle bekannten Nuklide nahe bei einer ganzen Zahl liegen.

In der Biochemie, in den USA auch in der organischen Chemie, wird die atomare Masseneinheit auch als Dalton bezeichnet (Einheitenzeichen: Da), benannt nach dem englischen Naturforscher John Dalton.

In der Chemie wird auf Empfehlung der IUPAC[1] der Zahlenwert $ A_{u} $ für sich allein, ohne Einheit, als relative Atommasse (engl. atomic weight) bezeichnet und formal als eine eigene, dimensionslose Größe aufgefasst, nämlich als das Massenverhältnis des jeweiligen Atoms zu einem gedachten Atom der Masse $ 1\,\mathrm {u} $. Im Unterschied zu dieser relativen Atommasse wird die in kg, g oder u angegebene Masse als absolute Atommasse (engl. atomic mass) bezeichnet.

Die Atommassen der Nuklide sind annähernd ganzzahlige Vielfache der Masse des Wasserstoffatoms. Die Abweichungen zur nächsten ganzen Zahl werden durch die unterschiedlichen Massen von Proton und Neutron und den Massendefekt erklärt. In Listen wie Atomic Mass Adjustment 2012[2] und in interaktiven Nuklidkarten wird anstelle der Atommasse oft der Massenexzess angegeben, manchmal sowohl Massenexzess als auch Atommasse.

Aus den Atommassen, den daraus berechenbaren Molekülmassen und anhand der daraus abgeleiteten molaren Masse lassen sich die Massenverhältnisse der an einer chemischen Reaktion beteiligten Stoffe berechnen.

Die durchschnittliche Atommasse eines Mischelements wird als gewichtetes arithmetisches Mittel der Atommassen der Isotope mit den natürlichen Häufigkeiten der Isotope als Gewichten berechnet. In der Chemie wird diese durchschnittliche Atommasse als Atomgewicht des Elements bezeichnet.[1][3]

Historisches

Tabelle mit Atomgewichten in Johann Samuel Traugott Gehlers physikalischem Wörterbuch 1840

Die erste Tabelle mit relativen Atommassen wurde 1805 von John Dalton veröffentlicht. Er erhielt sie anhand der Massenverhältnisse bei chemischen Reaktionen, wobei er das leichteste Atom, das Wasserstoffatom, als „Masseneinheit“ wählte (siehe Atomare Masseneinheit) – dies jedoch in Unkenntnis der Eigenschaft des Wasserstoffes als zweiatomiges Molekül.

Weitere relative Atom- und Molekülmassen wurden für gasförmige Elemente und Verbindungen auf der Grundlage des Avogadroschen Gesetzes berechnet, das heißt durch Abwiegen und Vergleichen bekannter Gasvolumina, später auch mit Hilfe der Faradayschen Gesetze. Avogadro bezeichnete die kleinsten denkbaren Teile noch als Moleküle. Berzelius führte dann den Begriff Atom für den kleinsten denkbaren Teil eines Stoffes ein. Willkürlich setzte er das Atomgewicht von Sauerstoff gleich 100. Spätere Forscher wählten den leichtesten Stoff, Wasserstoff, als Standard, setzten jedoch das Wasserstoffmolekül gleich 1. Für Kohlenstoff erhielten sie dann das „Äquivalentgewicht“ 6, für Sauerstoff 8.

Eigentlicher Wegbereiter für korrekte Atomgewichte von Elementen war Jean Baptiste Dumas. Er bestimmte für 30 Elemente sehr exakt die Atomgewichte und fand, dass 22 Elemente Atomgewichte hatten, die Vielfache des Atomgewichts von Wasserstoff sind.

Erst Stanislao Cannizzaro führte im Jahr 1858 die heutige Unterscheidung zwischen Atom und Molekül ein. Er nahm an, dass ein Molekül Wasserstoff aus zwei Atomen Wasserstoff bestehe. Für das einzelne Wasserstoffatom setzte er willkürlich das Atomgewicht 1 fest, ein Wasserstoffmolekül hat folglich eine Molekülmasse von 2. 1865 wurde Sauerstoff, dessen Atome im Mittel annähernd die 16-fache Masse des Wasserstoffatoms haben, von Jean Servais Stas als Bezugselement vorgeschlagen und ihm die Masse 16,00 zugeteilt.

1929 entdeckten W. F. Giauque und H. L. Johnston, dass Sauerstoff drei Isotope besitzt. Das bewog die IUPAP, eine Massenskala einzuführen, die auf m(16O) basiert, während die IUPAC fortfuhr, die Ar(O) = 16, also Sauerstoff in seiner natürlichen Isotopenzusammensetzung, zu verwenden.

1957 schlugen A. O. Nier und A. Ölander unabhängig voneinander vor, dass Ar(12C) und m(12C) = 12 u die alten atomaren Masseneinheiten ersetzen sollten. Darauf einigten sich IUPAP und IUPAC dann in den Jahren 1959–1961.[4] Bis zu dieser Zeit hatten folglich die Physiker und die Chemiker zwei leicht unterschiedliche Massenskalen. Im Jahr 1960 publizierten F. Everling, L. A. König, Josef Mattauch und Aaldert Wapstra Massen von Nukliden.[5]

Bis heute dient das Kohlenstoffisotop 12C mit der Masse von 12 u als Bezugsbasis. Die Atommasse gibt an, wievielmal größer die Masse des jeweiligen Atoms als 1/12 der Masse des 12C-Atoms ist. Wie oben erwähnt sind die Atommassen der Nuklide annähernd, aber nicht genau, ganzzahlige Vielfache der Masse des Wasserstoffatoms.

Die folgende Tabelle zeigt einige durchschnittliche (siehe unten) relative Atommassen, also Atomgewichte, je nach den vier verschiedenen Bezugsmassen:

Element bezogen auf
natH = 1 natO = 16 16O = 16 12C = 12
natH 01,000 01,008 01,008 01,008
natCl 35,175 35,457 35,464 35,453
natO 15,872 16,000 16,004 15,999
natN 13,896 14,008 14,011 14,007
natC 11,916 12,011 12,015 12,011

Messung, Datensammlungen

Genaue Atommassen werden heute mit Massenspektrometern bestimmt. Dabei ergeben sich die Atommassen der einzelnen Isotope sehr präzise. Zur Bestimmung der Atommassen der Elemente in ihrer natürlichen Isotopenzusammensetzung (Atomgewichte) muss dann noch das Isotopenverhältnis ermittelt werden. Für Zwecke der Chemie wird diese durchschnittliche Atommasse des natürlichen Isotopengemisches in der Erdkruste angegeben; in Spezialfällen muss die Herkunft des Isotopengemisches beachtet werden.

Weitere Beispiele für die relativen Atomgewichte einiger chemischer Elemente:

  • Silicium (Si): 28,0855
  • Gold (Au): 196,966569
  • Eisen (Fe): 55,845

Eine von Aaldert Wapstra begründete internationale Expertengruppe sammelt seit etwa 1955 aus Originalpublikationen Messergebnisse der Atommassen aller bekannten Nuklide und bildet daraus eingeschätzte (d. h. evaluierte, fachmännisch bewertete) gewichtete Mittelwerte. Die Ergebnisse wurden bis zum Jahr 2003 in der Fachzeitschrift Nuclear Physics A veröffentlicht.[6] Die Geschichte der Messung der Massen der Nuklide und ihrer Einschätzungen hat Wapstras Mitautor Georges Audi im Jahr 2006 zusammengefasst.[7] Seine Arbeit enthält auch viele Literaturverweise zu dieser Geschichte. Den jeweils neuesten Stand der eingeschätzten Atommassen veröffentlicht die Gruppe etwa alle zehn Jahre, zuletzt (Stand 2016) im Jahr 2012 unter dem Namen Ame2012 (Atomic mass evaluation) in der Fachzeitschrift Chinese Physics. Die Datenliste dieser Auswertung ist von einigen Servern kostenlos abrufbar.[2]

Für Atomgewichte im chemischen Sinn kann eine Microsoft Excel-97-2003-Arbeitsmappe der IUPAC mit dem Titel Table of Standard Atomic Weights 2013 aus dem Netz abgerufen werden.[8] Für das Mischelement Eisen z. B. findet man dort als aktuell besten Wert der durchschnittlichen Masse eines neutralen Atoms $ 55{,}845(2)\,\mathrm {u} $ (die Ziffer in Klammern gibt die Unsicherheit der letzten Stelle an).

Weblinks

Wiktionary: Atommasse – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. 1,0 1,1 J. R. de Laeter et al.: Atomic weights of the elements: Review 2000 (IUPAC technical report). In: Pure and applied chemistry. Band 75, Nr. 6, 2003, S. 683–800 (online [PDF; abgerufen am 27. März 2018]). S. 687 f: „Als Tomas Batuecas, Präsident des Atomic Weight Committee, die Autoritäten im IUPAC Bureau 1963 überredete, den Begriff in atomic mass (Atommasse) zu ändern, revoltierten traditionelle Chemiker, atomic weight (Atomgewicht) wurde beibehalten und Edward Wichers, der früher Kommissionspräsident war, wurde stillschweigend wieder zum Vorsitzenden der Atomic Weight Commission gemacht.“
  2. 2,0 2,1 G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer: The Ame2012 atomic mass evaluation. Chinese Physics C Band 36 (2012), Seite 1287–1602, Atomic Mass Adjustment 2012.
  3. Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten: Chemie: Studieren kompakt, 10., aktualisierte Auflage, München 2011, S. 51.
  4. G. Audi, The History of Nuclidic Masses and of their Evaluation, Int.J.Mass Spectr.Ion Process. 251 (2006) 85-94, arxiv
  5. F. Everling, L. A. König, J. M. E. Mattauch, A. H. Wapstra: Relative nuclidic masses. In: Nucl. Phys. A. Band 18, 1960, S. 529–569.
  6. G. Audi, A. Wapstra: The 1993 atomic mass evaluation: (I) Atomic mass table. Nuclear Physics A, Band 565 (1993) S. 1–65, doi:10.1016/0375-9474(93)90024-R
  7. Georges Audi: The history of nuclidic masses and of their evaluation. In: International Journal of Mass Spectrometry. Band 251, Nr. 2–3, 2006, S. 85–94, doi:10.1016/j.ijms.2006.01.048 (online [PDF; abgerufen am 28. Dezember 2017]).
  8. IUPAC, Standard Atomic Weights Revised 2013.

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.