Stehende Welle

Der Titel dieses Artikels ist mehrdeutig. Zur Überströmung von Hindernissen siehe Stehende Welle (Strömung).
Eine stehende Welle (schwarz) als Überlagerung zweier gegenläufiger Wanderwellen (rot und blau). Die Knoten der stehenden Welle befinden sich an den roten Punkten.

Eine stehende Welle, auch Stehwelle, ist eine Welle, deren Auslenkung an bestimmten Stellen immer bei Null verbleibt. Sie kann als Überlagerung zweier gegenläufig fortschreitender Wellen gleicher Frequenz und gleicher Amplitude aufgefasst werden. Die gegenläufigen Wellen können aus zwei verschiedenen Erregern stammen oder durch Reflexion einer Welle an einem Hindernis entstehen. Bei Wasserwellen siehe Clapotis.

Ein mechanisches Beispiel einer eindimensionalen stehenden Welle ist eine Seilwelle, bei der man ein Seilende auf und ab bewegt und so eine fortschreitende Welle im Seil erzeugt. Ist das andere Seilende befestigt, so wird die Welle dort reflektiert und läuft auf dem Seil zurück. Als Folge sieht man keine fortschreitende Welle mehr, sondern das Seil vollführt eine Schwingung, bei der bestimmte Stellen in Ruhe bleiben (Wellenknoten oder Schwingungsknoten, auch Schnelleknoten), während andere mit großer Schwingungsweite (Amplitude) hin und her schwingen (Wellenbäuche oder Schwingungsbäuche, auch Schnellebauch).

Hintergrund

Der Abstand zweier Wellenknoten oder zweier Wellenbäuche ist die halbe Wellenlänge der ursprünglichen fortschreitenden Wellen.

Bei manchen stehenden Wellen ist eine zweite Größe wichtig, deren Knoten und Bäuche um eine Viertel-Wellenlänge gegenüber denen der ersten Größe verschoben sind. Bei einer stehenden elektromagnetischen Welle sind die beiden Größen die elektrische und die magnetische Feldstärke, bei einer stehenden Schallwelle in einem Blasinstrument der Schalldruck und die Schallschnelle. In diesen Fällen sind die Begriffe Bauch und Knoten daher doppeldeutig; klar sind Bezeichnungen wie Druckbauch, Druckknoten, Schnellebauch (Amplitudenbauch), Schnelleknoten (Amplitudenknoten).

Wenn die stehende Welle mittels zweier gleichphasiger (synchron schwingender) Erreger erzeugt wird, befindet sich ein (Amplituden)bauch genau in der Mitte zwischen ihnen, da die Wellen hier gleichzeitig eintreffen und sich stets gegenseitig verstärken. Eine Viertel-Wellenlänge hiervon entfernt beträgt die Zeitdifferenz des Eintreffens eine halbe Schwingungsperiode. Die Wellen sind hier gegenphasig und löschen sich aus, es entsteht ein (Amplituden)knoten. (Knotenpunkt) Durch Verallgemeinerung dieser Überlegung findet man die Bedingungen:

Bauch: Der Abstand d eines Schwingungsbauches vom Mittelpunkt ist ein Vielfaches der halben Wellenlänge.

$ d=n\cdot {\frac {\lambda }{2}}\qquad {\text{mit}}\qquad n=0,1,2,\dots $

Knoten: Der Abstand d eines Schwingungsknotens vom Mittelpunkt ist ein Vielfaches der halben Wellenlänge plus ein Viertel.

$ d=\left(n+{\frac {1}{2}}\right)\cdot {\frac {\lambda }{2}}\qquad {\text{mit}}\qquad n=0,1,2,\dots $

Die von der Welle transportierte Energie wird durch die Reflexion zurückgeworfen. Auf einem Wellenleiter mit durch vollständige Reflexion entstandener stehender Welle findet daher kein Energietransport statt. Wird die Welle nur teilweise reflektiert, ergibt sich eine Überlagerung von stehender und fortschreitender Welle. In diesem Fall wird Energie transportiert.

Stehende Wellen zwischen zwei Reflektoren

Zwischen zwei Reflektoren können sich nur stehende Wellen mit bestimmten Wellenlängen bilden. Die Frequenzen zu diesen Wellenlängen werden als Eigenfrequenzen oder Eigenresonanzen bezeichnet.

Welche Randbedingung dazu führt, dass die Wellenlängen nicht beliebig sein können, hängt von der Art der betrachteten Welle ab. Beispielsweise muss bei fest eingespannten Enden einer schwingenden Saite an beiden Enden jeweils ein Schwingungsknoten vorliegen, wie in der Abbildung unten gezeigt.

Bei einer stehenden elektromagnetischen Welle gilt, dass die elektrische Feldstärke am reflektierenden Leiter null sein muss, wohingegen die magnetische Feldstärke dort immer einen Schwingungsbauch besitzt. Bei der resultierenden elektromagnetischen Welle sind nun elektrisches Feld und magnetisches Feld um 90° phasenverschoben, wobei das E- und H-Feld der hin- bzw. rücklaufenden Welle phasengleich sind.

Bei einer stehenden (akustischen) Longitudinalwelle tritt an jeder reflektierenden Wand in einem Raum immer ein Schalldruckbauch auf; siehe Raummoden. In der Akustik interessiert überwiegend die Schallfeldgröße als Schalldruck.

Stehwellenverhältnis

Ein Maß für den Anteil stehender Wellen auf einem elektrischen Leiter ist das Stehwellenverhältnis (englisch: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) = SWR).

Anwendungen

  • Elektromagnetische Wellen im Hohlraumresonator, z. B. in Teilchenbeschleunigern
  • Quantenmechanische Erklärung des Wasserstoffatoms
  • Musikinstrumente (siehe z. B. Saiteninstrumente, Holzblasinstrumente, auch Chladnische Klangfigur).
  • In Konzertsälen wird nach Möglichkeit vermieden, dass Resonanzen durch stehende Wellen auftreten. Hier wird auf eine für alle Frequenzen gleichmäßig hohe Dämpfung Wert gelegt.
  • Ein optischer Resonator stabilisiert die Wellenlänge („Farbe“) des Laserlichts.
  • Stehende Wellen (rhythmische Schwingung) des Wassers in Seen, Buchten oder Hafenbecken bezeichnet man als Seiche (siehe auch Wasserwunder von Konstanz).

Weitere Bilder

Durch die Bewegung der Moleküle können auch größere Teilchen wie Wassertropfen bewegt werden. Die Tropfen sammeln sich in den Schwingungsknoten einer stehenden Welle, die sich aufgrund eines unterhalb der Tropfen angeordneten Schallreflektors ausbildet (Reflektor wurde nicht mitfotografiert). Der Abstand zwischen Wandlerstirnfläche und Reflektor muss passend zur Wellenlänge in Luft gewählt werden.

Siehe auch

Literatur

  • W. Demtröder: Experimentalphysik 1. 5. Auflage, Springer 2008, ISBN 978-3-540-79294-9
  • Andreas Friesecke: Die Audio-Enzyklopädie. Ein Nachschlagewerk für Tontechniker. Saur, München 2007, ISBN 978-3-598-11774-9.
  • Philipp Bohr: Physik. Lehrbuch für die Oberstufe, Norderstedt 2004, ISBN 3-8334-5041-X.
  • Peter Kaltenbach, Heinrich Meldau: Physik und Funktechnik Für Seefahrer. Friedrich Vieweg & Sohn, Braunschweig 1938.
  • F. W. Gundlach: Grundlagen der Höchstfrequenztechnik. Springer, Berlin/Heidelberg 1950.

Weblinks

Commons: Stehende Wellen – Sammlung von Bildern, Videos und Audiodateien

News mit dem Thema Stehende Welle

Die News der letzten Tage

03.02.2023
Quantencomputer
Verschränkte Atome im Innsbrucker Quantennetzwerk
Gefangenen Ionen wurden bisher nur über kurze Distanz im Labor miteinander verschränkt, doch nun haben Teams der Universität Innsbruck zwei Ionen über eine Distanz von 230 Metern Luftlinie miteinander verschränkt.
03.02.2023
Exoplaneten | Biophysik | Astrobiologie
Ein naher, möglicherweise lebensfreundlicher Exoplanet mit Erdmasse
Ein Team von Astronominnenund Astronomen hat einen Exoplaneten von der Masse der Erde entdeckt, der in der habitablen Zone des roten Zwergsterns Wolf 1069 kreist.
02.02.2023
Atomphysik | Geophysik
Sauerstoff in der Hochatmosphäre der Erde
In einer Untersuchung der Zusammensetzung der oberen Atmosphäre der Erde wurde ein erhöhtes Vorkommen von 18O nachgewiesen – einem schwereren Isotop mit 10 anstelle von acht Neutronen wie bei 16O.
01.02.2023
Kometen und Asteroiden
Schlüsseleigenschaften von Asteroiden und Kometen simulieren
Mit Simulationen, die feinere Details modellieren als je zuvor, haben Forscher*innen eine Schlüsselphase bei der Entstehung von Planeten in unserem Sonnensystem modelliert.
02.02.2023
Teilchenphysik | Festkörperphysik | Quantenphysik
Terahertz-Strahlung mit Spinwellen gekoppelt
Ein internationales Forschungsteam hat eine neue Methode zur effizienten Kopplung von Terahertz-Wellen mit deutlich kurzwelligeren, sogenannten Spinwellen entwickelt.
31.01.2023
Satelliten und Sonden | Quantenoptik
Mehr Leistung für die Laserkommunikation im All
Sie fliegen hoch über unseren Köpfen und sind für unsere global vernetzte Welt unabdingbar: Satelliten - Um ihre Daten untereinander sowie mit Bodenstationen auszutauschen, haben sie lange Zeit mit Funkwellen gearbeitet.
26.01.2023
Sterne
Neun neue und exotische Geschöpfe für den Pulsar-Zoo
Neun Millisekunden-Pulsare, die meisten in seltenen und teils ungewöhnlichen Doppelsystemen: Das sind erste Ergebnisse einer gezielten Durchmusterung mit dem MeerKAT-Teleskop in Südafrika.
27.01.2023
Festkörperphysik | Quantenphysik
Erstmals zwei Quantenpunkte gekoppelt
Eine winzig kleine Veränderung bedeutet in der Quantenphysik einen großen Durchbruch: Einem internationalen Forschungsteam aus Bochum und Kopenhagen ist es gelungen, zwei Quantenpunkte in einem Nanochip zu koppeln.
25.01.2023
Teilchenphysik | Elektrodynamik | Quantenoptik
Elektronenpulse mit einer Dauer von nur 53 Attosekunden
Mit ultraschnellen Laserblitzen hat eine Forschungsgruppe in Stuttgart den bisher kürzesten Elektronenpuls erzeugt und gemessen.
26.01.2023
Relativitätstheorie | Quantenphysik | Astrophysik
Ein neuer Ansatz zur Lösung des Rätsels um die Dunkle Energie
Was steckt hinter der Dunklen Energie – und was verbindet sie mit der von Albert Einstein eingeführten kosmologischen Konstanten?
25.01.2023
Thermodynamik | Festkörperphysik | Optik
Neues optisches Beschichtungssystem: Kein Beschlagen und unerwünschte Reflexionen mehr
Optiken, die nicht beschlagen und kaum reflektieren – das ist künftig dank eines neuen optischen Beschichtungssystems möglich.
24.01.2023
Teleskope | Astrophysik | Astrobiologie
James-Webb-Weltraumteleskop identifiziert Herkunft eisiger Bausteine des Lebens
Interstellare Molekülwolken gelten als Wiegen von Planetensystemen: Ein internationales Forschungsteam entdeckt mithilfe des James-Webb-Weltraumteleskops das tiefst gelegene und kälteste Eis, das je in einer solchen Molekülwolke nachgewiesen wurde.