Experiment zur Quantenelektrodynamik

Experiment zur Quantenelektrodynamik



Physik-News vom 27.04.2020

Die fundamentalen Gesetze der Physik basieren auf Symmetrien, die unter anderem die Wechselwirkungen zwischen geladenen Teilchen bestimmen. Forscher der Universität Heidelberg haben mithilfe ultrakalter Atome die Symmetrien der Quantenelektrodynamik experimentell konstruiert. Sie erhoffen sich neue Erkenntnisse für die Realisierung zukünftiger Quantentechnologien, mit denen komplexe physikalische Phänomene simuliert werden können.

In der Theorie der Quantenelektrodynamik geht es um die elektromagnetische Wechselwirkung von Elektronen mit Lichtteilchen. Sie basiert auf der sogenannten U(1)-Symmetrie, die etwa die Bewegung der Teilchen vorgibt. Mit ihren Experimenten wollen die Heidelberger Physiker unter der Leitung von Juniorprofessor Dr. Fred Jendrzejewski zu einer effizienten Untersuchung dieser komplexen physikalischen Theorie beitragen. Ihnen ist es jetzt gelungen, dafür experimentell einen elementaren Baustein zu realisieren.


Künstlerische Visualisierung: Symmetrien schränken die Bewegung von ultrakalten Atomen im Labor ein.

Publikation:


A. Mil, T. V. Zache, A. Hegde, A. Xia, R. P. Bhatt, M. K. Oberthaler, Ph. Hauke, J. Berges, F. Jendrzejewski
A scalable realization of local U(1) gauge invariance in cold atomic mixtures
Science 2020

DOI: 10.1126/science.aaz5312



„Wir sehen unsere Forschungsergebnisse als zentralen Schritt hin zu einer Plattform bestehend aus einer Kette korrekt zusammengesetzter Bausteine, die einer groß angelegten Implementierung der Quantenelektrodynamik in ultrakalten Atomen dienen soll“, erläutert Prof. Jendrzejewski, der am Kirchhoff-Institut für Physik der Universität Heidelberg eine Emmy Noether-Gruppe leitet.

Eine mögliche Anwendung sehen die Wissenschaftler in der Entwicklung von Quantengroßgeräten zur Simulation komplexer physikalischer Phänomene, die nicht mit Teilchenbeschleunigern beobachtet werden können. Auch für die Untersuchung von Problemen in der Materialforschung, zum Beispiel bei stark wechselwirkenden Systemen, die schwer zu berechnen sind, könnte der von den Heidelberger Wissenschaftlern entwickelte Baustein von Nutzen sein.


Diese Newsmeldung wurde mit Material der Universität Heidelberg via Informationsdienst Wissenschaft erstellt.






warte

warte

warte

warte

warte

warte

warte

warte

warte

warte