Temperatur

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Temperatur (Begriffsklärung) aufgeführt.
Physikalische Größe
Name Thermodynamische Temperatur
Formelzeichen $ T $ (für Angaben in Kelvin)
$ \vartheta ,t $ (für Angaben in Grad Celsius)
Größen- und
Einheitensystem
Einheit Dimension
SI K, °C Θ
Planck Planck-Temperatur Θ

Die Temperatur ist eine Zustandsgröße von zentraler Bedeutung bei der makroskopischen Beschreibung physikalischer und chemischer Zustände und Prozesse in Wissenschaft, Technik und Umwelt. Die Temperatur ist ein objektives Maß dafür, wie warm oder kalt ein Gegenstand ist. Sie wird mit einem Thermometer gemessen. Ihre SI-Einheit ist das Kelvin mit dem Einheitenzeichen K. In Deutschland, Österreich und der Schweiz ist die Einheit Grad Celsius (°C) ebenfalls zulässig. Die gemessene Temperatur kann sich zuweilen erheblich von der gefühlten Temperatur unterscheiden.

Bringt man zwei Körper mit unterschiedlichen Temperaturen in thermischen Kontakt, findet Wärmeübertragung statt. Die Wärme fließt dabei stets vom heißeren zum kälteren Körper. Dadurch nimmt die Temperaturdifferenz so lange ab, bis sich die beiden Temperaturen einander angeglichen haben. Wenn die Temperaturen gleich sind, herrscht thermisches Gleichgewicht, in dem kein Wärmeaustausch mehr stattfindet.

Die mikroskopische Deutung der Temperatur ergibt sich in der statistischen Physik, die davon ausgeht, dass jeder materielle Stoff aus vielen Teilchen zusammengesetzt ist (meist Atome oder Moleküle), die sich in ständiger ungeordneter Bewegung befinden und eine Energie haben, die sich aus kinetischer, potentieller sowie gegebenenfalls auch innerer Anregungsenergie zusammensetzt. Eine Erhöhung der Temperatur verursacht eine Erhöhung der durchschnittlichen Energie der Teilchen. Im Zustand des thermischen Gleichgewichts verteilen sich die Energiewerte der einzelnen Teilchen statistisch gemäß einer Häufigkeitsverteilung, deren Form durch die Temperatur bestimmt wird (siehe – je nach Art der Teilchen – Boltzmann-Statistik, Fermi-Dirac-Statistik, Bose-Einstein-Statistik). Dieses Bild ist auch anwendbar, wenn es sich nicht um ein System materieller Teilchen, sondern um Photonen handelt (siehe Wärmestrahlung).

Im idealen Gas ist die gesamte innere Energie allein durch die kinetische Energie aller Teilchen gegeben, wobei der Durchschnittswert pro Teilchen proportional zur Absoluten Temperatur ist. Die Temperatureinheit Kelvin ist durch Festlegung des Proportionalitätsfaktors definiert und damit direkt an die Energieeinheit Joule angebunden. Vor der Revision des Internationalen Einheitensystems (SI) von 2019 war das Kelvin noch separat definiert.

Die Temperatur ist eine intensive Zustandsgröße. Das bedeutet, dass sie ihren Wert beibehält, wenn man den betrachteten Körper teilt. Dagegen hat die Innere Energie als extensive Größe die Eigenschaften einer Menge, die aufgeteilt werden kann.

Physikalische Grundlagen

Überblick

Alle Gase, Flüssigkeiten und festen Stoffe bestehen aus sehr kleinen Teilchen, den Atomen und Molekülen. Diese befinden sich in ständiger ungeordneter Bewegung und zwischen ihnen wirken Kräfte. Mit „ungeordnet“ meint man in diesem Zusammenhang, dass z. B. die Geschwindigkeitsvektoren der Teilchen eines Körpers, dessen Massenmittelpunkt ruht, gleichmäßig über alle Richtungen verteilt sind und sich auch in ihren Beträgen unterscheiden. Der Mittelwert der Geschwindigkeitsbeträge hängt von der Art des Stoffes, vom Aggregatzustand und vor allem von der Temperatur ab. Für gasförmige, flüssige und feste Körper gilt: Je höher die Temperatur des Körpers ist, desto größer ist die mittlere Geschwindigkeit seiner Teilchen. Allgemein gilt dies auch für alle anderen Energieformen, in denen die Teilchen in ungeordneter Weise Energie besitzen können, z. B. Drehbewegungen, Schwingungen (dazu zählen im Kristallgitter der festen Körper auch Gitterschwingungen der Teilchen um ihre Ruhelage). Dieser anschauliche Zusammenhang legt schon nahe, dass es eine tiefste mögliche Temperatur gibt, den absoluten Nullpunkt, an dem sich die kleinsten Teilchen nicht stärker bewegen, als es aufgrund der Unschärferelation unvermeidlich ist (Nullpunktsenergie).

Eine bestimmte Temperatur, die im ganzen System einheitlich gilt, existiert nur, wenn das System im Zustand des thermischen Gleichgewichts ist. Systeme, die nicht im Gleichgewichtszustand sind, bestehen oft aus Teilsystemen mit jeweils eigenen Temperaturen, z. B. Leitungswasser und Eiswürfel in einem Glas, oder die Elektronen und Ionen in einem Nichtgleichgewichts-Plasma, oder die Freiheitsgrade jeweils für Translation, Rotation oder Vibration in einem expandierenden Molekülstrahl. Besteht zwischen den Teilsystemen die Möglichkeit eines Energieaustauschs in Form eines thermischen Kontakts, dann strebt das Gesamtsystem durch Wärmeaustausch zwischen den Teilsystemen von selbst dem Zustand des thermischen Gleichgewichts zu.

In theoretischer Hinsicht wird die Temperatur als grundlegender Begriff durch die Eigenschaft eingeführt, dass zwei beliebige Systeme, die mit einem dritten System im thermischen Gleichgewicht stehen, dann auch untereinander im thermischen Gleichgewicht stehen. Diese Tatsache wird auch als Nullter Hauptsatz der Thermodynamik bezeichnet. Gleichheit der Temperaturen bedeutet thermisches Gleichgewicht, d. h., es findet, auch bei thermischem Kontakt, kein Wärmeaustausch statt. Dass eine einzige Zustandsgröße wie die Temperatur für die Entscheidung ausreicht, ob Gleichgewicht vorliegt oder nicht, kann aus dem nullten Hauptsatz hergeleitet werden.[1]

Die Summe aller Energien der ungeordneten Bewegungen der Teilchen eines Systems und ihrer internen potentiellen und kinetischen Energien stellt eine bestimmte Menge an Energie dar, die als Innere Energie des Systems bezeichnet wird. Die innere Energie kann mittels einer Wärmekraftmaschine zum Teil in eine geordnete Bewegung übergeführt werden und dann Arbeit leisten, wenn ein zweites System mit tieferer Temperatur zur Verfügung steht. Denn nur ein Teil der inneren Energie ist zur Umwandlung in Arbeit nutzbar, während der Rest als Abwärme an das zweite System abgegeben werden muss. Nach dem Zweiten Hauptsatz der Thermodynamik gibt es für diese Abwärme eine untere Schranke, die nur vom Verhältnis beider Temperaturen bestimmt ist, also durch keine Wahl der Stoffe oder der genutzten Prozesse unterschritten werden kann. Dies wurde 1848 von Lord Kelvin bemerkt und seit 1924 zur Definition der thermodynamischen Temperatur genutzt. Zum selben Ergebnis kommt man, wenn man die Zustandsgröße Entropie als Funktion der inneren Energie ausdrückt und hiervon die Ableitung bildet.

Fast alle physikalischen und chemischen Eigenschaften von Stoffen sind (zumindest schwach) von der Temperatur abhängig. Beispiele sind die thermische Ausdehnung von Stoffen, der elektrische Widerstand, die Löslichkeit von Stoffen in Lösungsmitteln, die Schallgeschwindigkeit oder Druck und Dichte von Gasen. Sprunghafte Veränderungen von Stoffeigenschaften treten hingegen auch bei kleinsten Veränderungen der Temperatur ein, wenn der Aggregatzustand sich ändert oder ein anderer Phasenübergang eintritt.

Die Temperatur beeinflusst auch die Reaktionsgeschwindigkeit von chemischen Prozessen, indem diese sich je 10 °C Temperaturerhöhung typischerweise etwa verdoppelt (van-’t-Hoff’sche Regel). Das gilt damit auch für die Stoffwechselprozesse von Lebewesen.

Ideales Gas

Hauptartikel: Ideales Gas

Das ideale Gas ist ein Modellgas, das sich gut dafür eignet, die Grundlagen der Thermodynamik und Eigenschaften der Temperatur zu entwickeln. Dem Modell zufolge sind die Teilchen des Gases punktförmig, können aber dennoch elastisch gegeneinander und gegen die Gefäßwand stoßen. Ansonsten gibt es keine Wechselwirkung zwischen den Teilchen. Das ideale Gas gibt das Verhalten der einatomigen Edelgase sehr gut wieder, gilt aber auch in guter Näherung für die normale Luft, obwohl mehratomige Moleküle rotieren oder vibrieren können und daher nicht immer als punktförmige Objekte ohne innere Freiheitsgrade vereinfacht werden können.

Für das ideale Gas ist die Temperatur $ T $ proportional zur mittleren kinetischen Energie $ {\overline {E_{\mathrm {kin} }}} $ der Teilchen

$ {\overline {E_{\mathrm {kin} }}}={\tfrac {3}{2}}k_{\mathrm {B} }T $

wobei $ k_{\mathrm {B} } $ die Boltzmann-Konstante ist. In diesem Fall ist also die makroskopische Größe Temperatur auf sehr einfache Weise mit mikroskopischen Teilcheneigenschaften verknüpft. Mit der Teilchenzahl $ N $ multipliziert, ergibt sich die Gesamtenergie des Gases. Außerdem gilt für das ideale Gas die thermische Zustandsgleichung, die die makroskopischen Größen Temperatur, Volumen $ V $ und Druck $ p $ verknüpft,

$ pV=Nk_{\mathrm {B} }T $.

Diese Gleichung wurde 2019 im Internationalen Einheitensystem zur Definitionsgleichung der Temperatur gemacht, weil sie mit der gleichzeitigen zahlenmäßigen Festlegung des Wertes der Boltzmann-Konstante außer T nur messbare Größen enthält. In der Messvorschrift ist berücksichtigt, dass diese Gleichung für ein reales Gas nur näherungsweise erfüllt ist, im Grenzfall $ p\rightarrow 0 $ aber exakt gilt.

Da die Größen $ {\overline {E_{\mathrm {kin} }}},\ p,\ V $ nicht negativ werden können, kann man an diesen Gleichungen sehen, dass es einen absoluten Temperaturnullpunkt $ T=0\,\mathrm {K} \ (=\;-273,15\,^{\circ }\mathrm {C} ) $ geben muss, bei dem sich die Gasteilchen nicht mehr bewegen würden, und Druck oder Volumen des Gases Null wären. Den absoluten Nullpunkt der Temperatur gibt es wirklich, obwohl diese Herleitung nicht stichhaltig ist, weil es keinen Stoff gibt, der bis $ T=0\,\mathrm {K} $ gasförmig bliebe. Immerhin aber ist Helium unter Atmosphärendruck noch bei Temperaturen von wenigen K ein fast ideales Gas.

Temperatur, Wärme und thermische Energie

Manchmal werden die Größen Temperatur, Wärme und thermische Energie miteinander verwechselt. Es handelt sich jedoch um verschiedene Größen. Die Temperatur und die thermische Energie beschreiben den Zustand eines Systems, wobei die Temperatur eine intensive Größe ist, die thermische Energie (die verschiedene Bedeutungen haben kann) jedoch oftmals eine extensive Größe. Bei idealen Gasen ist die Temperatur ein direktes Maß für den Mittelwert der kinetischen Energie der Teilchen. Die thermische Energie in ihrer makroskopischen Bedeutung ist gleich der inneren Energie, also der die Summe aller kinetischen, potentiellen und Anregungs-Energien der Teilchen.

Wärme hingegen charakterisiert als physikalischer Begriff nicht einen einzelnen Systemzustand, sondern einen Prozess, der von einem Systemzustand zu einem anderen führt. Wärme ist die dabei erfolgte Änderung der inneren Energie abzüglich der eventuell geleisteten Arbeit (siehe Erster Hauptsatz der Thermodynamik). Geht man umgekehrt von einer bestimmten Menge abgegebener oder aufgenommener Wärme aus, dann kann der Prozess je nach der Prozessführung (z. B. isobar, isochor oder isotherm) zu unterschiedlichen Endzuständen mit unterschiedlichen Temperaturen führen.

Temperaturausgleich

Stehen zwei Systeme mit unterschiedlichen Temperaturen $ T_{1},\;T_{2} $ in einer Verbindung, die den Wärmeübertrag ermöglicht (thermischer Kontakt oder diabatische Verbindung), dann fließt Wärme vom heißeren zum kälteren System und beide Temperaturen nähern sich derselben Gleichgewichtstemperatur $ T_{G} $ an. Wenn dabei keine Phasenübergänge oder chemische Reaktionen stattfinden, liegt $ T_{G} $ zwischen den Anfangstemperaturen. $ T_{G} $ ist dann ein gewichtetes Mittel aus $ T_{1} $ und $ T_{2} $, wobei die Wärmekapazitäten $ C_{1},\;C_{2} $ der beiden Systeme (sofern diese hinreichend konstant sind) als Gewichtsfaktoren wirken. Das gleiche Endergebnis tritt auch ein, wenn zwei Flüssigkeiten oder zwei Gase miteinander vermischt werden (Mischungstemperatur), z. B. heißes und kaltes Wasser. Treten Phasenübergänge auf, kann die Gleichgewichtstemperatur auch gleich einer der beiden Anfangstemperaturen sein, z. B. 0 °C beim Abkühlen eines warmen Getränks mit unnötig vielen Eiswürfeln von 0 °C. Bei chemischen Reaktionen kann die Endtemperatur auch außerhalb des Bereichs $ [T_{1},\,T_{2}] $ liegen, z. B. bei Kältemischungen darunter, bei Verbrennung darüber.

Temperatur in der Relativitätstheorie

Ein thermodynamisches Gleichgewicht gilt zunächst im gemeinsamen Ruhesystem beider Körper. Im Sinne der speziellen Relativitätstheorie ist ein System im thermodynamischen Gleichgewicht daher außer durch die Temperatur auch durch ein Ruhesystem charakterisiert. Thermodynamische Gleichungen sind aber nicht invariant unter Lorentztransformationen. Eine konkrete Frage wäre z. B., welche Temperatur von einem bewegten Beobachter gemessen wird. Die Rotverschiebung der Wärmestrahlung etwa verschiebt die Frequenzen im Planckschen Strahlungsgesetz im Verhältnis $ \approx v/c $ und lässt damit einen strahlenden Körper kälter erscheinen, wenn man sich mit Geschwindigkeit $ v $ von ihm weg bewegt. Im Prinzip tritt das gleiche Problem auch schon auf, wenn heißes Wasser durch ein zunächst kaltes Rohr strömt.

Die Temperatur wird als zeitartiger Vierervektor dargestellt. Im Ruhesystem sind also die drei Ortskoordinaten $ 0 $ und die Zeitkoordinate ist die übliche Temperatur. Zu einem bewegten System muss man mittels der Lorentz-Transformation umrechnen. Es ist allerdings im Kontext der Zustandsgleichungen günstiger und daher auch üblicher, die inverse Temperatur, genauer $ \beta ={\tfrac {1}{k_{\mathrm {B} }T}} $, als zeitartigen Vierervektor darzustellen.

Zur Begründung betrachte man den 1. Hauptsatz, für reversible Prozesse in der Form[Anm. 1]

$ \mathrm {d} S={\frac {1}{T}}\mathrm {d} U+{\frac {1}{T}}P\mathrm {d} V $,

und beachte, dass die Energie eines bewegten Systems um die kinetische Energie größer ist als seine innere Energie $ U $, bei $ v/c\ll 1 $ also näherungsweise

$ E=U+{\frac {Mv^{2}}{2}} $

wobei $ v $ die dreidimensionale Geschwindigkeit ist. Daher ist

$ \mathrm {d} U=\mathrm {d} E-v\mathrm {d} v $ und
$ \mathrm {d} S={\frac {1}{T}}\mathrm {d} E-{\frac {1}{T}}v\mathrm {d} v+{\frac {1}{T}}P\mathrm {d} V $,

in 4-dimensionaler Schreibweise also gleich

$ \mathrm {d} S=-\theta _{\mu }\mathrm {d} \mathbf {p} ^{\mu }+{\frac {1}{T}}P\mathrm {d} V $,

wenn $ \mathbf {p} _{\mu }=(E/c,{\vec {p}}) $ (mit dem räumlichen Impulsvektor $ {\vec {p}} $) der Viererimpuls und $ \mathbf {\theta } _{\mu }=(-c/T,{\vec {v}}/T) $ die inverse Vierertemperatur ist.

In der allgemeinen Relativitätstheorie ist die Raumzeit gekrümmt, so dass im Allgemeinen der thermodynamische Limes nicht wohldefiniert ist. Wenn die Metrik der Raumzeit zeitunabhängig, also statisch, ist, kann allerdings ein globaler Temperaturbegriff definiert werden. Im allgemeinen Fall einer zeitabhängigen Metrik, wie sie beispielsweise Grundlage der Beschreibung des expandierenden Universums ist, können Zustandsgrößen wie die Temperatur nur lokal definiert werden. Ein verbreitetes Kriterium dafür, dass ein System zumindest lokal thermisch ist, ist, dass die Phasenraumdichte die Boltzmann-Gleichung ohne Streuung erfüllt.

Temperatur in der Quantenphysik

Im Bereich der Quantenphysik kann man die Temperatur nur dann, wenn sie „genügend hoch“ ist, mit einer ungeordneten Teilchenbewegung beschreiben, in der alle möglichen Energieformen vorkommen. „Genügend hoch“ bedeutet dabei, dass die Energie $ k_{\mathrm {B} }T $ groß ist gegenüber den typischen Abständen der Energieniveaus der einzelnen Teilchen im gegebenen System. Beispielsweise muss die Temperatur weit über 1000 K sein, damit bei zweiatomigen Gasen wie N2, O2 die Molekülschwingungen mit angeregt werden. Bei H2-Molekülen erfordert auch die Anregung der Rotation Temperaturen über einigen 100 K. Freiheitsgrade, die bei tieferen Temperaturen nicht an der Wärmebewegung teilnehmen, werden als eingefroren bezeichnet, siehe auch Freiheitsgrad#Thermodynamik und statistische Mechanik. Das drückt sich z. B. deutlich in der Temperaturabhängigkeit der spezifischen Wärme aus.

Die theoretische Behandlung der Thermodynamik erfolgt in der Quantenphysik ausschließlich mit den Methoden der Statistischen Physik (siehe Quantenstatistik, Vielteilchentheorie). Darin tritt die Temperatur genau wie in der klassischen statistischen Physik im Exponenten der Boltzmann-Verteilung auf und bestimmt damit die Form der Häufigkeitsverteilung, mit der die Teilchen die verschiedenen Energiezustände einnehmen.

Temperaturempfinden und Wärmeübertragung

Stehen zwei Körper unterschiedlicher Temperatur in Wärmekontakt, so wird nach dem nullten Hauptsatz der Thermodynamik solange Energie vom wärmeren zum kälteren Körper übertragen, bis beide die gleiche Temperatur angenommen haben und damit im thermischen Gleichgewicht stehen. Dabei kann es zwischen den beiden Seiten der Grenzfläche zunächst Temperatursprünge geben. Es gibt drei Möglichkeiten der Wärmeübertragung:

  1. Wärmeleitung
  2. Konvektion
  3. Wärmestrahlung

Der Mensch kann mit der Haut nur Temperaturen im Bereich zwischen etwa 5 °C und 40 °C fühlen. Dabei wird genau genommen nicht die Temperatur eines berührten Gegenstands wahrgenommen, sondern die Temperatur am Ort der in der Haut liegenden Thermorezeptoren, die je nach Stärke des Wärmestroms durch die Hautoberfläche variiert (gefühlte Temperatur). Dieses hat für das Temperaturempfinden einige Konsequenzen:

  • Temperaturen oberhalb der Oberflächentemperatur der Haut fühlen sich warm an, solche unterhalb empfinden wir als kalt
  • Materialien mit hoher Wärmeleitfähigkeit, wie Metalle, führen zu höheren Wärmeströmen und fühlen sich deshalb wärmer beziehungsweise kälter an als Materialien mit niedrigerer Wärmeleitfähigkeit, wie Holz oder Polystyrol
  • Die gefühlte Lufttemperatur ist bei Wind niedriger als bei Windstille (bei extrem heißem Wetter umgekehrt). Der Effekt wird bei Temperaturen < 10 °C durch den Windchill und bei höheren Temperaturen durch den Hitzeindex beschrieben.
  • Ein leicht beheizter, gefliester Fußboden kann mit den nackten Füßen als angenehm warm, mit den Händen berührt hingegen als kühl empfunden werden. Dies ist der Fall, wenn die Hauttemperatur an Händen höher ist als an den Füßen und die Temperatur des Fußbodens dazwischen liegt.
  • Die Hautempfindung kann Lufttemperatur von überlagerter Wärmestrahlung nicht unterscheiden. Das Gleiche gilt im Allgemeinen für Thermometer; deshalb müssen z. B. Lufttemperaturen immer im Schatten gemessen werden
  • Lauwarmes Wasser wird von den beiden Händen als unterschiedlich wahrgenommen, wenn man sie vorher eine Zeitlang in heißes bzw. kaltes Wasser gehalten hatte.

Genau genommen gilt dieses nicht nur für das menschliche Empfinden. Auch in vielen technischen Zusammenhängen ist nicht die Temperatur entscheidend, sondern der Wärmestrom. Zum Beispiel hat die Atmosphäre der Erde in einem Bereich oberhalb 1000 km Temperaturen von mehr als 1000 °C; dennoch verglühen dort keine Satelliten, denn auf Grund der geringen Teilchendichte ist der Energieübertrag minimal.

Definitionen der Temperatur

Der Temperaturbegriff entwickelte sich erst spät, nicht nur weil eine klare konzeptuelle Trennung zwischen Temperatur als intensiver Meßgröße und Wärme als extensiver Größe fehlte, sondern auch weil es bis in die Frühe Neuzeit hinein keine Instrumente gab, mit denen man die Temperatur (den Grad von Wärme) hätte messen können.[2][3]

Die formalen Eigenschaften der Temperatur werden in der makroskopischen klassischen Thermodynamik behandelt. Die Temperatur leitet sich von den beiden Zustandsgrößen Innere Energie $ U $ und Entropie $ S $ ab:

$ T={\frac {\mathrm {d} U}{\mathrm {d} S}} $

Beim idealen Gas z. B. erfüllt die durch die Zustandsgleichung definierte Gastemperatur $ T={\frac {pV}{Nk_{\mathrm {B} }}} $ diese Bedingung.

Die statistische Interpretation der Entropie lautet nach Boltzmann:

$ S=k_{\mathrm {B} }\ln \Omega $

und daher die der Temperatur:

$ T={\frac {1}{k_{\mathrm {B} }}}\left({\frac {\partial \ln {\Omega }}{\partial U}}\right)^{-1} $

Hierbei bedeuten:

  • $ S $ die Entropie
  • $ U $ die innere Energie
  • $ \Omega $ die geglättete, gemittelte Kurve über $ \omega $, das angibt auf wie viele Möglichkeiten sich die Energie U im System verteilen kann; zerlegt in kleinstmögliche Energiepakete (siehe Quant).
  • $ k_{\mathrm {B} } $ die Boltzmann-Konstante

Die gleiche physikalische Größe $ T $ ergibt sich, wenn die wahrscheinlichste Verteilung der Teilchen eines (klassischen) Systems über die verschiedenen möglichen Energien aller möglichen Zustände eines einzelnen Teilchens bestimmt wird. Die Zustände zu einer gegebenen Energie $ E $ sind mit einer Wahrscheinlichkeit W besetzt, die proportional zum Boltzmann-Faktor $ \mathrm {e} ^{-{\frac {E}{k_{\mathrm {B} }T}}} $ ist.

Aus dieser Boltzmann-Verteilung folgen u. a. die Maxwell-Boltzmann-Verteilung der Molekülgeschwindigkeiten in einem Gas sowie der Gleichverteilungssatz der Energie über alle Freiheitsgrade der Teilchen.

Negative Temperaturen

Der Temperaturbegriff lässt sich erweitern, so dass sich auch negative Temperaturen definieren lassen.[4][5]

Ein System, das makroskopisch im thermischen Gleichgewicht erscheint, also eine einheitliche Temperatur hat, besteht mikroskopisch gesehen aus Teilchen, die nicht alle die gleiche Energie haben. Tatsächlich tauschen diese Teilchen durch Stöße ständig untereinander Energie aus, so dass sie auf Zustände mit unterschiedlichen Energien verteilt sind (Boltzmann-Statistik) und sich z. B. eine Maxwellsche Geschwindigkeitsverteilung einstellt. Wie eingangs bereits beschrieben, bemisst die Temperatur die über alle Teilchen gemittelte Energie. Diese Verteilung ist nicht gleichmäßig, sondern häuft sich (bei positiven Temperaturen) bei geringen Energien, während nur wenige Teilchen sehr viel Energie haben. Zu steigenden Energien hin zeigt sich eine exponentielle Abnahme der Häufigkeit. Erhöht man die Temperatur, so gleichen sich die unterschiedlichen Häufigkeiten immer mehr an, im hypothetischen Grenzfall der unendlichen Temperatur wären in jedem Energiezustand die gleiche Anzahl von Teilchen.

Die Erweiterung des Temperaturbegriffs geht nun davon aus, dass die Energieverteilung der Teilchen so geändert wird, dass die höheren Energieklassen stärker besetzt sein können als die niedrigen (Besetzungsumkehr, Inversion). Dies würde sich in der Gleichung der Boltzmann-Statistik formal als negative Temperatur ausdrücken.

Inzwischen ist es gelungen, entsprechende Gase mit negativer Temperatur unter Laborbedingungen herzustellen.[6][7] Ebenso kann man die Besetzungsinversion im aktiven Medium eines Lasers als Zustand negativer Temperatur auffassen.

Der Zustand negativer Temperatur ist allerdings instabil. Die Energie aus einem solchen System würde bei Kontakt mit einem Körper beliebiger positiver Temperatur an diesen abfließen. Insofern muss man also sagen, dass ein Körper mit negativer Temperatur heißer ist als jeder Körper mit positiver Temperatur.

Messung

Messung durch thermischen Kontakt

Temperaturmessung bei der Stahlschmelze

Die Temperaturmessung erfolgt hierbei mit Hilfe von Thermometern oder Temperatursensoren. Das Herstellen eines thermischen Kontaktes erfordert ausreichende Wärmeleitung, Konvektion oder ein Strahlungsgleichgewicht zwischen Messobjekt (Festkörper, Flüssigkeit, Gas) und Sensor. Die Messgenauigkeit kann z. B. durch nicht ausgeglichene Wärmestrahlungs-Bilanz, Luftbewegungen oder durch Wärmeableitung entlang des Sensors beeinträchtigt sein. Die Messgenauigkeit wird theoretisch durch die zufällige Brownsche Molekularbewegung begrenzt.

Die Temperaturerfassung durch Wärmekontakt kann in vier Methoden unterteilt werden:

  1. mechanische Erfassung durch Ausnutzen der unterschiedlichen thermischen Ausdehnungskoeffizienten von Materialien mittels
    • Gas- oder Flüssigkeitsthermometer (z. B. traditionelle Quecksilber- oder Alkoholthermometer)
    • Bimetallthermometer
  2. Messen elektrischer Größen
    • Nutzung des temperaturabhängigen elektrischen Widerstandes von Leitern und Halbleitern: Kaltleiter (PTC) und Heißleiter (NTC), siehe auch Widerstandsthermometer
    • Thermoelemente liefern Spannungen, die von Temperaturdifferenzen abhängen.
    • Spezielle Halbleiterschaltungen nutzen die Bandlücke, um eine zur absoluten Temperatur proportionale Spannung zu erzeugen, siehe Bandabstandsreferenz.
  3. Zeit- bzw. Frequenzmessung
    • Die temperaturabhängige Differenzfrequenz verschieden geschnittener Schwingquarze ist langzeitstabil und mit hoher Auflösung zu messen.
    • Die temperaturabhängige Abklingrate der Fluoreszenz eines Leuchtstoffes kann über eine optische Faser gemessen werden.
    • Die faseroptische Temperaturmessung nutzt den Raman-Effekt in Lichtwellenleitern zur ortsaufgelösten Messung der absoluten Temperatur über die gesamte Länge der Faser.
  4. indirekte Messung über temperaturabhängige Zustandsänderungen von Materialien
    • Seger-Kegel (Formkörper, die ihre Festigkeit und dadurch ihre Kontur bei einer bestimmten Temperatur ändern)
    • Temperaturmessfarben (auch thermochromatische Farben; Farbumschlag bei einer bestimmten Temperatur)
    • Beobachten des Erweichens, Schmelzens, Glühens oder der Anlauffarben

Messung anhand der Wärmestrahlung

Thermografisches Bild eines heißen Kaffeebechers (Falschfarbendarstellung)

Die Temperatur einer Oberfläche kann berührungslos durch Messung der Wärmestrahlung bestimmt werden, sofern der Emissionsgrad und die Reflexion der Umgebungsstrahlung ausreichend genau bekannt sind. Die Messung erfolgt z. B. mit einem Pyrometer oder mit einer Thermografie-Kamera.

Je nach Temperatur kommen dabei verschiedene Wellenlängenbereiche in Frage (siehe hierzu Stefan-Boltzmann-Gesetz oder Wiensches Verschiebungsgesetz). Bei niedrigen Temperaturen kommen Bolometer, Mikrobolometer oder gekühlte Halbleiterdetektoren in Frage, bei hohen Temperaturen werden ungekühlte Fotodioden oder auch der visuelle Vergleich der Intensität und Farbe des Glühens angewendet (Wolframfaden-Pyrometer, Glühfarben).

Rechts ist eine Thermografie zu sehen; hierbei wird eine Falschfarbendarstellung der Strahlungsemission im Mittleren Infrarot (ca. 5…10 µm Wellenlänge) erzeugt, die sich durch Kalibrierung in Form einer Farbskala an die Temperaturskala koppeln lässt. Links im Bild ist die Spiegelung der Strahlung des heißen Bechers zu erkennen.

Messfehler entstehen hierbei wie auch bei Pyrometern durch

  • unterschiedliche bzw. unbekannte Emissionsgrade der Messobjekte
  • Reflexionen von Fremdstrahlung an glatten Oberflächen
  • Eigenstrahlung der Luft zwischen Objekt und Sensor

Bei Minimierung aller störenden Einflüsse sind Messgenauigkeiten bzw. Kontraste bis herab zu Temperaturdifferenzen von 0,01 K möglich.

Die berührungslose Temperaturmessung anhand der Wärmestrahlung wird auch bei der Fernerkundung und zur Bestimmung der Oberflächentemperatur von Sternen angewendet, sofern die Eigenstrahlung der Lufthülle gering genug ist. IR-Teleskope sind deshalb nur auf hohen Bergen sinnvoll.

Siehe hierzu auch Messgeräte, Messtechnik, Messung und Kategorie Temperaturmessung

Temperaturskalen und ihre Einheiten

Empirische Skalen

Eine empirische Temperaturskala ist eine willkürliche Festlegung der Größenordnung der Temperatur und gestattet die Angabe der Temperatur in Bezug zu einem Vergleichswert.

Es gibt zwei Methoden, eine Skala zu definieren:

Nach der ersten Methode werden zwei Fixpunkte festgelegt. Diese Fixpunkte sind zweckmäßigerweise in der Natur vorkommende und durch Experimente reproduzierbare Werte. Der Abstand zwischen den Fixpunkten wird dann anhand einer temperaturabhängigen Stoff- oder Prozesseigenschaft gleichmäßig aufgeteilt. Eine Stoffeigenschaft ist z. B. der Schmelzpunkt von gefrorenem Wasser. Ein Beispiel für eine Prozesseigenschaft ist die Winkeländerung des Zeigers bei einem Bimetallthermometer.

Anders Celsius wählte zum Beispiel für seine Skala den Siedepunkt und den Schmelzpunkt von Wasser bei Normaldruck als Fixpunkte und teilte die Volumenänderung von Quecksilber zwischen diesen Punkten in 100 gleiche Teile auf (bei 0 siedete Wasser und bei 100 schmolz es; nach Anders' Tod wurde die Skala invertiert). Daniel Fahrenheit wählte dagegen als Fixpunkte die Temperatur einer Kältemischung und die Körpertemperatur des Menschen. Dies sind beides Skalen basierend auf Stoffeigenschaften.

Bei der Methode nach der Prozesseigenschaft genügt ein Fixpunkt, der wie zuvor durch eine Stoffeigenschaft definiert wird, und zusätzlich eine temperaturabhängige Stoffeigenschaft. Man könnte z. B. eine bestimmte relative Volumenänderung von Quecksilber als „ein Grad“ definieren und dann, ausgehend vom Fixpunkt, Skalenstrich für Skalenstrich anzeichnen.

Eine Idee für eine Skala nach der zweiten Methode stammt von Rudolf Plank. Sie orientiert sich an der Volumenänderung von Gasen bei konstantem Druck. Als Fixpunkt dient wieder der Schmelzpunkt von Wasser. Die Einheit ist der Temperaturunterschied, der einer Volumenänderung um den Faktor (1 + 1/273,15) entspricht. Eine solche logarithmische Temperaturskala erstreckt sich von minus Unendlich bis plus Unendlich. Es ist kein absoluter Nullpunkt erforderlich, der ja definitionsgemäß gar nicht erreicht werden kann.

Die bekanntesten Temperaturskalen mit ihren verschiedenen Charakteristika sind weiter unten tabellarisch dargestellt. Die heute gültige Temperaturskala ist die „International Temperature Scale of 1990“ (ITS-90). Die Festlegung der Einheiten über bestimmte spezifische Messpunkte ist im Mai 2019 aufgehoben worden, siehe Tabelle.

Skalen mit SI-Einheit

Seit 1924 gilt die Thermodynamische Definition der Temperatur mithilfe des 2. Hauptsatzes, die das Verhältnis zweier Temperaturen aus dem Verhältnis zweier Energien bestimmt. Die Existenz einer solchen absoluten und substanzunabhängigen Temperaturskala folgt aus dem Wirkungsgrad des Carnot-Prozesses. Denn für den Wirkungsgrad $ \eta $ jeder Wärmekraftmaschine, die zwischen zwei Wärmereservoirs mit den Temperaturen $ T_{k} $ und $ T_{w} $ periodisch und reversibel arbeitet, gilt:

$ \eta =1-{\frac {T_{k}}{T_{w}}} $

Der Nullpunkt der Skala liegt beim absoluten Nullpunkt, aber die Temperatureinheit ($ 1\;\mathrm {K} $) ist damit noch offen. Deren Größe wurde zunächst dadurch festgelegt, dass für die Temperatur eines wohldefinierten Zustands von Wasser (Tripelpunkt) ein Zahlenwert (273,16) gewählt wurde. Seit Mai 2019 ist die Temperatureinheit, jetzt wieder mit Rückgriff auf die Zustandsgleichung des idealen Gases, durch die zahlenmäßige Festlegung der Boltzmann-Konstante an die die Energieeinheit Joule angeschlossen: 1 K ist diejenige Temperaturänderung, die die Energie $ k_{\mathrm {B} }\,T $ um Vorlage:ZahlExp J erhöht.[8]

Danach hat der Tripelpunkt von Wasser keine definierende Bedeutung mehr, sondern ist ein zu bestimmender Messwert.

Die Celsiustemperatur (Formelzeichen $ t $ oder auch $ \vartheta $) gibt nach ihrer modernen Definition nicht mehr die empirische Temperatur der historischen Celsius-Skala an, sondern ist die thermodynamische Temperatur der Kelvin-Skala, verschoben um 273,15 K:

$ {\frac {t}{^{\circ }\mathrm {C} }}={\frac {T}{\mathrm {K} }}-273{,}15 $.

Die Einheit Grad Celsius (°C) ist eine abgeleitete SI-Einheit. Für Temperaturdifferenzen ist das Grad Celsius identisch mit dem Kelvin. Temperaturdifferenzen sollen generell in K angegeben werden, wobei die Differenz zweier Celsiustemperaturen auch in °C angegeben werden kann.[9][10] Der Zahlenwert ist in beiden Fällen derselbe.

Skalen ohne SI-Einheit

In den USA ist die Fahrenheit-Skala mit der Einheit Grad Fahrenheit (Einheitenzeichen: °F) immer noch sehr gebräuchlich. Die absolute Temperatur auf Fahrenheit-Basis wird mit Grad Rankine (Einheitenzeichen: °Ra) bezeichnet. Die Rankine-Skala hat den Nullpunkt wie die Kelvin-Skala beim absoluten Temperaturnullpunkt, im Gegensatz zu dieser jedoch die Skalenabstände der Fahrenheit-Skala. Beide Skalen werden heute über eine per Definition exakte Umrechnungsformel zum Kelvin definiert.[11]

Übersicht über die klassischen Temperaturskalen
Einheit Einheiten­zeichen unterer Fixpunkt F1 oberer Fixpunkt F2 Skalen­inter­vall Erfinder Ent­ste­hungs­jahr Verbrei­tungs­gebiet
Kelvin K T0 = 0 K TTri(H2O) = 273,16 K $ {\frac {F_{2}-F_{1}}{273{,}16}} $ William Thomson Baron Kelvin 1848 weltweit (SI-Einheit) [Anm 1]
Grad Celsius °C TSchm(H2O) = 0 °C [Anm 2] TSied(H2O) = 100 °C [Anm 2] $ {\frac {F_{2}-F_{1}}{100}} $ Anders Celsius 1742 weltweit
Grad Fahrenheit °F TKältem. = 0 °F [Anm 3] TMensch = 96 °F [Anm 3] $ {\frac {F_{2}-F_{1}}{96}} $ Daniel Fahrenheit 1714 USA
Grad Rankine °Ra, °R T0 = 0 °Ra $ 1^{\circ }Ra\;{\stackrel {\mathrm {def} }{=}}\;1^{\circ }F $ William Rankine 1859 USA
Grad Delisle °De, °D TSchm(H2O) = 150 °De TSied(H2O) = 0 °De $ {\frac {F_{1}-F_{2}}{150}} $ Joseph-Nicolas Delisle 1732 Russland (19. Jhd.)
Grad Réaumur °Ré, °Re, °R TSchm(H2O) = 0 °Ré TSied(H2O) = 80 °Ré $ {\frac {F_{2}-F_{1}}{80}} $ René-Antoine Ferchault de Réaumur 1730 Westeuropa bis Ende 19. Jhd.
Grad Newton °N TSchm(H2O) = 0 °N TSied(H2O) = 33 °N $ {\frac {F_{2}-F_{1}}{33}} $ Isaac Newton ≈ 1700 keines
Grad Rømer °Rø TSchm(Lake) = 0 °Rø [Anm 4] TSied(H2O) = 60 °Rø $ {\frac {F_{2}-F_{1}}{60}} $ Ole Rømer 1701 keines

Anmerkungen zur Tabelle:
  1. Ursprünglich über Celsius-Skala definiert, ΔT = 1 K ≡ 1 °C.
  2. 2,0 2,1 Traditionelle Fixpunkte; ursprünglich umgekehrt (ähnlich wie Delisle-Skala); heute über Kelvin-Skala definiert, ΔT = 1 °C ≡ 1 K, also der 273,16-te Teil von TTri(H2O) = 0,01 °C.
  3. 3,0 3,1 Genutzt wurde die Temperatur einer Kältemischung von Eis, Wasser und Salmiak oder Seesalz (−17,8 °C) und die „Körpertemperatur eines gesunden Menschen“ (35,6 °C); heute über TSchm(H2O) = 32 °F und TSied(H2O) = 212 °F sowie ΔT = (F2−F1) / 180 definiert.
  4. Genutzt wurde die Schmelztemperatur einer Salzlake (−14,3 °C).
Ausgewählte Temperaturwerte in verschiedenen Einheiten
Messwert \ Einheit Grad Fahrenheit Grad Rankine Grad Réaumur Grad Celsius Kelvin
mittlere Oberflächentemperatur der Sonne 9 941 °F 10 400 °Ra 4 404 °R 5 505 °C 5 778 K
Schmelzpunkt von Eisen 2 795 °F 3 255 °Ra 1 228 °R 1 535 °C 1 808 K
Schmelzpunkt von Blei 621,43 °F 1081,10 °Ra 261,97 °R 327,46 °C 600,61 K
Siedepunkt von Wasser (bei Normaldruck) 212 °F 671,67 °Ra 80 °R 100 °C 373,15 K
höchste im Freien gemessene Lufttemperatur 136,04 °F 595,71 °Ra 46,24 °R 57,80 °C 330,95 K
Körpertemperatur des Menschen nach Fahrenheit 96 °F 555,67 °Ra 28,44 °R 35,56 °C 308,71 K
Tripelpunkt von Wasser 32,02 °F 491,69 °Ra 0,01 °R 0,01 °C 273,16 K
Gefrierpunkt von Wasser (bei Normaldruck) 32 °F 491,67 °Ra 0 °R 0 °C 273,15 K
tiefste Temperatur in Danzig, Winter 1708/09 0 °F 459,67 °Ra −14,22 °R −17,78 °C 255,37 K
Schmelzpunkt von Quecksilber −37,89 °F 421,78 °Ra −31,06 °R −38,83 °C 234,32 K
tiefste im Freien gemessene Lufttemperatur −128,56 °F 331,11 °Ra −71,36 °R −89,2 °C 183,95 K
Gefrierpunkt von Ethanol −173,92 °F 285,75 °Ra −91,52 °R −114,40 °C 158,75 K
Siedepunkt von Stickstoff −320,44 °F 139,23 °Ra −156,64 °R −195,80 °C 77,35 K
absoluter Nullpunkt −459,67 °F 0 °Ra −218,52 °R −273,15 °C 0 K
Anmerkung: Die grau hinterlegten Felder bezeichnen die traditionellen Fixpunkte zur Festsetzung der betreffenden Einheit.

Temperaturbeispiele siehe Größenordnung (Temperatur).

Weblinks

Commons: Temperatur – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Temperatur – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Anmerkungen

  1. Der Druck wird hier mit dem Symbol P bezeichnet, um Verwechslung mit dem Impuls zu vermeiden.

Einzelnachweise

  1. Max Born: Kritische Bemerkungen zur traditionellen Darstellung der Thermodynamik. In: Physikalische Zeitschrift. Band 22, 1921, S. 218–224.
  2. Meyer, Kirstine Bjerrum: Die Entwickelung des Temperaturbegriffs im Laufe der Zeiten sowie dessen Zusammenhang mit den wechselnden Vorstellungen über die Natur der Wärme. Vieweg, Braunschweig 1913.
  3. Middleton, W. E. Knowles: A History of the Thermometer and Its Uses in Meteorology. Johns Hopkins University Press, Baltimore 1966.
  4. Bošnjaković, Knoche, „Technische Thermodynamik“, 8. Auflage 1998, Steinkopf-Verlag Darmstadt, ISBN 978-3-642-63818-3; Abschnitt 9.9 „Erweiterung des Temperaturbegriffs“.
  5. Klaus Goeke, „Statistik und Thermodynamik“, 1. Auflage 2010, Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH 2010, ISBN 978-3-8348-0942-1; Abschnitt 2.6.9 „Positive und negative Temperaturen“.
  6. S. Braun, J. P. Ronzheimer, M. Schreiber, S. S. Hodgman, T. Rom, I. Bloch, U. Schneider: Negative Absolute Temperature for Motional Degrees of Freedom. In: Science. Band 339, Nr. 6115, 4. Januar 2013, ISSN 0036-8075, S. 52–55, doi:10.1126/science.1227831.
  7. Siehe Beitrag in Spektrum der Wissenschaft 3/2013, ISSN 0170-2971, „Kälter als kalt und heißer als unendlich heiß“ von Olliver Morsch über die Ergebnisse von Bloch/Schneider vom Max-Planck Institut für Quantenoptik in Garching und der Ludwig-Maximilians-Universität München.
  8. Le système international d'unités [1]. 9e édition, 2019 (die sogenannte „SI-Broschüre“, französisch und englisch), S. 21 und 133.
  9. DIN 1301-1:2010 Einheiten – Einheitennamen, Einheitenzeichen
  10. DIN 1345:1993 Thermodynamik – Grundbegriffe.
  11. NIST, SI Units – Temperature, Fassung vom 5. Juni 2019.

News mit dem Thema Temperatur

28.07.2022
Quantenphysik | Teilchenphysik | Thermodynamik
Ein Nanokelvin-Mikrowellenkühlschrank für Moleküle
Forscher haben eine neuartige Mikrowellen-Kühltechnik für molekulare Gase entwickelt.
11.04.2022
Sonnensysteme | Planeten
ESO-Teleskope messen überraschende Änderungen in der Temperatur des Neptun
Ein internationales Team von Astronomen und Astronominnen hat mit bodengestützten Teleskopen, darunter das Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO), die Temperaturen in der Atmosphäre des Neptun über einen Zeitraum von 17 Jahren verfolgt.
02.02.2022
Astrophysik | Thermodynamik
Die frühe Abkühlung unseres Universums
Astrophysiker haben eine neue Methode zur Messung der Temperatur der kosmischen Hintergrundstrahlung nur 880 Millionen Jahre nach dem Urknall entwickelt.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
06.10.2021
Elektrodynamik | Festkörperphysik
Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
27.07.2021
Quantenphysik | Thermodynamik
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden.
26.05.2021
Exoplaneten
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
06.05.2021
Festkörperphysik | Quantenphysik
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
09.02.2021
Festkörperphysik
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen.
05.02.2021
Festkörperphysik | Quantenphysik
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
21.12.2020
Elektrodynamik | Teilchenphysik
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
27.07.2020
Milchstraße | Sterne | Astrophysik
RAVE: Mehr als ein Jahrzehnt lang Untersuchung der Bewegung von Sternen in der Milchstraße
Wie bewegen sich die Sterne in unserer Milchstraße?
09.07.2020
Festkörperphysik | Quantenphysik
Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
Verlustfreie Stromleitung bei Raumtemperatur?
24.06.2020
Festkörperphysik
Damaszener Stahl aus dem 3D-Drucker
Durch geschickte Temperaturvariation lässt sich ein Verbundwerkstoff mit unterschiedlich harten Metallschichten erzeugen.
01.06.2020
Klassische Mechanik
Wissenschaftler entdecken neue Formen von Feldspat
In Hochdruckexperimenten hat ein Forschungsteam neue Formen des weit verbreiteten Minerals Feldspat entdeckt.
02.06.2020
Plasmaphysik
Neue Messung verschärft altes Problem
Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein.
07.05.2020
Festkörperphysik
Neue Messmethode hilft, Physik der Hochtemperatur-Supraleitung zu verstehen
Von einer nachhaltigen Energieversorgung bis hin zu Quantencomputern: Hochtemperatur-Supraleiter könnten unsere heutige Technik revolutionieren.
13.04.2020
Elektrodynamik
Neue Methode zur temperaturabhängigen Erzeugung von Terahertz-Strahlung
Physiker der Universitäten Augsburg und Münster haben einen neuartigen Emitter zur Erzeugung von Terahertz-Strahlung vorgestellt, der sich durch Variation der Temperatur an- oder abschalten lässt.
11.03.2020
ESO-Teleskop beobachtet Exoplaneten, auf dem es Eisen regnet
Forscher, die das Very Large Telescope (VLT) der ESO nutzten, haben einen extremen Planeten beobachtet, auf dem sie Eisenregen vermuten.
02.03.2020
Mit der Leerstelle zum Quantenbit
Physiker aus Würzburg haben zum ersten Mal Spinzentren experimentell in zweidimensionalen Materialien beobachtet.
10.02.2020
Quantentechnologien: Neue Einblicke in supraleitende Vorgänge
Supraleiter gelten als vielversprechende Bauteile für Quantencomputer, funktionieren bisher jedoch nur bei sehr niedrigen Temperaturen.
04.02.2020
Studie: Einzelnes Atom als Messsonde nutzt erstmals Quanteninformationen
Sensoren erfassen bestimmte Parameter wie Temperatur und Luftdruck in ihrer Umgebung.
30.01.2020
Ein Quantum Festkörper
Forscher in Österreich bringen mithilfe eines Lasers ein Nanoteilchen aus Glas zum Schweben und kühlen es erstmals bis in das Quantenregime.
29.01.2020
Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht
Kein Volumen, nicht einmal Fläche: Ein eindimensionales Material ist wie ein Draht und hat Eigenschaften, die ganz anders sind als bei seiner 3D-Variante.
16.12.2019
Metall mit ungewöhnlichen Eigenschaften
Eine chinesisch-deutsche Forschungskooperation mit Beteiligung der Universität Augsburg hat bei einem Metall Eigenschaften nachgewiesen, die sich mit gängigen physikalischen Theorien nicht erklären lassen.
02.10.2019
Biobasierte Carbonfasern – Nachhaltige Hochleistung für den Leichtbau
Carbonfasern werden aus polymeren faserförmigen Vorläufermaterialien hergestellt, den Präkursoren.
22.08.2019
Experiment HADES simuliert die Kollision und das Verschmelzen von Sternen: 800 Milliarden Grad in der kosmischen Küche
Sie gehören zu den spektakulärsten Ereignissen im Universum: Kollisionen von Neutronensternen.
09.08.2019
800 Milliarden Grad Celsius: Temperaturen wie in Sternenkollisionen im Labor gemessen
Sie gehören zu den heißesten Momenten im kosmischen Geschehen: die Kollisionen von Neutronensternen im Universum, bei denen chemische Elemente gebildet werden.
18.07.2019
Chemie des kosmologischen Dunklen Zeitalters im Labor untersucht
Neue Messungen ergeben eine dramatisch höhere Häufigkeit von Heliumhydrid-Ionen im frühen Universum.
25.06.2019
Neue Erkenntnisse könnten Solarzellen günstiger machen
Seit vielen Jahren versuchen WissenschafterInnen die Dynamik in komplexen Materialien bei verschiedenen Temperaturen zu beschreiben.
02.05.2019
Beton beim Explodieren beobachtet
Auch wenn Beton nicht brennbar ist, kann es bei Tunnelbränden gefährlich werden: Hochleistungsbeton kann bei hohen Temperaturen explodieren.
17.04.2019
Erster astrophysikalischer Nachweis des Heliumhydrid-Ions
Das Heliumhydrid-Ion HeH+ war das erste Molekül, das im noch jungen Universum vor ca.
20.03.2019
Saarbrücker Sensorsystem misst Feuchtigkeit zuverlässig auch in heißen Öfen
Es behält volle Kontrolle über Trocknungsprozesse in Industrie-Öfen und misst zuverlässig den Feuchtegehalt der Luft – selbst bei hohen Temperaturen und Störfaktoren wie ausgedünsteten Substanzen: Professor Andreas Schütze, Projektleiter Tilman Sauerwald und ihr Forscherteam von der Universität des Saarlandes haben mit Partner-Unternehmen ein Sensorsystem entwickelt, das Trocknungs-, Back- und Garprozesse besonders präzise überwacht.
12.03.2019
Wie schwere Elemente im Universum entstehen
Bei Sternenexplosionen oder an der Oberfläche von Neutronensternen entstehen schwere Elemente durch den Einfang von Wasserstoff-Kernen (Protonen).
20.02.2019
Wasser ist homogener als gedacht
Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht.
13.02.2019
Neutronensterne: Wie kosmische Ereignisse Einblick in grundlegende Eigenschaften der Materie geben
Seitdem es möglich ist, Gravitationswellen von zwei miteinander verschmelzenden Neutronensternen zu messen, bietet sich die Chance, einige grundlegende Fragen zur Struktur der Materie zu beantworten.
08.02.2019
Kryo-Kraftspektroskopie zeigt mechanische Eigenschaften von DNA-Bauteilen auf
Physiker der Universität Basel haben eine neue Methode entwickelt, mit der sie bei sehr tiefen Temperaturen die Elastizität und die Bindungseigenschaften von DNA-Molekülen auf einer Oberfläche untersuchen können.
23.01.2019
Quantenphysik | Teilchenphysik
Studie: Zusammenstoß einzelner Atome führt zu zweifacher Änderung des Drehimpulses
Dank neuer Technik ist es möglich, einzelne Atome festzuhalten, gezielt zu bewegen oder ihren Zustand zu verändern.
19.12.2018
Exoplaneten
Exotische Planeten aus Saphiren und Rubinen
Forschende der Universitäten Zürich und Cambridge haben eine neue, exotische Klasse von Planeten ausserhalb unseres Sonnensystems entdeckt.
18.12.2018
Festkörperphysik
Reversible Brennstoffzelle bricht Wirkungsgrad-Rekord
Wissenschaftler des Forschungszentrums Jülich haben ein hochgradig effizientes Brennstoffzellen-System in Betrieb genommen, das einen elektrischen Wirkungsgrad im Wasserstoffbetrieb von über 60 Prozent erzielt.
29.10.2018
Quantenoptik
Kleinste Lichtportionen auf Knopfdruck: Uni Stuttgart entwickelt neuartige Einzelphotonenquelle
Forschende des Zentrums für Integrierte Quantenwissenschaft und -technologie Baden-Württemberg IQST am 5.
26.10.2018
Festkörperphysik
Unmögliches möglich machen
Multiferroika gelten als Wundermaterial für künftige Datenspeicher – sofern man ihre besonderen Eigenschaften auch bei den Betriebstemperaturen von Computern erhalten kann.
19.10.2018
Elektrodynamik | Festkörperphysik
Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
Durch die Kombination von verschiedenen thermomagnetischen Effekten sind Sensoren für richtungsabhängige Temperatursensoren möglich.
17.10.2018
Festkörperphysik
Auf dem Weg zu neuen Materalien für die Elektronik - Auf Wiedersehen, Silizium
Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist.
29.08.2018
Thermodynamik
Wie Wolken auch bei niedrigen Temperaturen entstehen
Kleine, mit freiem Auge nicht sichtbare Aerosolpartikel in der Luft ermöglichen die Entstehung von Wolken.
09.08.2018
Optik
Wärmer als gedacht: Sekundäroptik beim Wärmemanagement von Weißlicht-LEDs
Ein optimales Wärmemanagement ist entscheidend für die Leistung und Lebensdauer von Weißlicht-LEDs.
02.07.2018
Festkörperphysik
Saubere Abgase dank Schwamm-Struktur
Forschende des Paul Scherrer Instituts PSI in Villigen haben einen neuen Katalysator für die Reinigung von Abgasen aus Erdgasmotoren entwickelt.
25.06.2018
Plasmaphysik | Teilchenphysik
Fusionsanlage Wendelstein 7-X erreicht Weltrekord
Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung der Optimierung

Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der zurückliegenden Experimentierrunde erreicht.
25.06.2018
Galaxien
Schnelle Wasserbildung in diffusen interstellaren Wolken
Zwei wichtige Schritte in der Bildung von gasförmigem Wasser in diffusen interstellaren Wolken verlaufen schneller als bisher vermutet.
20.06.2018
Quantenoptik
Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen.
29.05.2018
Festkörperphysik | Quantenphysik | Quantenoptik | Teilchenphysik
Ultradünner Supraleiter ebnet Weg zu neuen quantenelektronischen Instrumenten
Forschern des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) ist es gemeinsam mit Kollegen aus Karlsruhe, London und Moskau gelungen, erstmals einen kohärenten Quanteneffekt mit einem bei tiefen Temperaturen kontinuierlich supraleitenden Nanodraht experimentell nachzuweisen und damit einen neuen Quantendetektor zu realisieren.
17.05.2018
Quantenoptik | Teilchenphysik
Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt
Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom?
09.05.2018
Festkörperphysik
Licht-induzierte Supraleitung unter hohem Druck
Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben die licht-induzierte Supraleitung im Alkali-dotierten Fullerid K3C60 unter hohem, extern angelegtem Druck untersucht.
18.04.2018
Thermodynamik
Forscher entdecken neue Form von Eis
Eis ist nicht gleich Eis.
11.04.2018
Stärkere Belege für Abschwächung des Golfstromsystems
Die als Golfstromsystem bekannte Umwälzströmung im Atlantik – eines der wichtigsten Wärmetransportsysteme der Erde, das warmes Wasser nach Norden und kaltes Wasser nach Süden pumpt – ist heute schwächer als je zuvor in den vergangenen 1000 Jahren.
27.02.2018
Astrophysik | Biophysik
Archaea wären auf Saturnmond lebensfähig
Wissenschafter um den Biologen Simon Rittmann von der Universität Wien gingen der Frage nach, ob mikrobielles Leben, wie wir es von der Erde her kennen, auch auf anderen Himmelskörpern möglich ist.
26.02.2018
Quantenphysik | Quantenoptik
Auf dem Weg zum Quantencomputer: Weltweit erstes schaltbares Quanten-Metamaterial untersucht
Quantencomputer können eine große Zahl an Rechenoperationen gleichzeitig ausführen.
15.11.2017
Sterne | Exoplaneten
Nächstgelegener Planet mit gemäßigten Temperaturen um ruhigen Stern entdeckt
In nur 11 Lichtjahren Entfernung von unserem Sonnensystem hat ein Forscherteam mit dem einzigartigen Planetenjäger-Instrument HARPS einen gemäßigten, erdähnlichen Planeten entdeckt.
11.07.2017
Festkörperphysik
Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet
Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen.
31.08.2016
Sterne | Exoplaneten
Planet in bewohnbarer Zone um nächstgelegenen Stern gefunden
Mit Teleskopen der ESO und anderen Einrichtungen ist es Astronomen gelungen, einen klaren Hinweis auf einen Planeten zu finden, der den nächsten Stern zur Erde, Proxima Centauri, umkreist.
24.04.2015
Quantenphysik
Quantenphysik – heiß und kalt zugleich
Eine Wolke aus Quantenteilchen kann mehrere Temperaturen gleichzeitig aufweisen.
24.04.2015
Exoplaneten
Ein Exoplanet mit höllischer Atmosphäre
Im Rahmen des Nationalen Forschungsschwerpunkts PlanetS haben Astronomen der Universitäten Genf und Bern ein präziseres Temperaturprofil der Atmosphäre eines Exoplaneten erstellt, als dies bisher möglich war.

Die News der letzten Tage

25.09.2022
Kometen_und_Asteroiden | Sonnensysteme
Untersucht: Bodenproben des Asteroiden Ryugu
Ein internationales Forschungsteam hat Bodenproben untersucht, die die japanische Raumsonde Hayabusa-2 auf dem Asteroiden Ryugu einsammelte.
22.09.2022
Milchstraße | Schwarze Löcher
Eine heiße Gasblase, die um das schwarze Loch der Milchstraße schwirrt
Mit Hilfe des Atacama Large Millimeter/Submillimeter Array (ALMA) haben Astronomen Anzeichen für einen „heißen Fleck“ entdeckt, der Sagittarius A*, das schwarze Loch im Zentrum unserer Galaxie, umkreist.
22.09.2022
Festkörperphysik | Quantenphysik | Teilchenphysik
Kernstück für einen skalierbaren Quantencomputer
Millionen von Quantenbits sind nötig, damit Quantencomputer sich in der Praxis als nützlich erweisen, die sogenannte Skalierbarkeit gilt als eine der größten Herausforderungen bei der Entwicklung.
22.09.2022
Optik | Quantenoptik
Zwischen Erfurt und Jena: Erstmals erfolgreich Quantenschlüssel via Glasfaser ausgetauscht
Das ist ein Meilenstein für die Erforschung der hochsicheren Quantenkommunikation in Thüringen und Deutschland.
22.09.2022
Festkörperphysik | Thermodynamik
Molekülschwingungen schärfer denn je messbar!
Mit Rastertunnelmikroskopen lassen sich zwar einzelne Moleküle abbilden, ihre Schwingungen waren damit bisher aber nur schwer detektierbar.
20.09.2022
Festkörperphysik | Quantenphysik
Neue Quantenmaterialien am Computer entworfen
Eine neues Designprinzip kann nun die Eigenschaften von bisher kaum erforschbaren Quantenmaterialien vorhersagen.
19.09.2022
Sterne
Stern-Kindheit prägt stellare Entwicklung
In klassischen Modellen zur Sternentwicklung wurde bis heute der frühen Evolution der Sterne wenig Bedeutung zugemessen.