F. Duncan M. Haldane

F. Duncan M. Haldane 2016

Frederick Duncan Michael Haldane (* 14. September 1951 in London) ist ein britischer Physiker, der in theoretischer Festkörperphysik arbeitet. 2016 erhielt er (zusammen mit David J. Thouless und J. Michael Kosterlitz) für Forschungen zur Theorie verschiedener topologischer Phasen der Materie den Nobelpreis für Physik.[1]

Leben

Haldane studierte an der Universität Cambridge (Bachelor 1973), wo er 1978 promovierte. 1977 bis 1981 war er am Institut Laue-Langevin. 1981 bis 1985 war er Assistant Professor an der University of Southern California. 1985 bis 1987 war er bei den Bell Laboratories. Ab 1987 war er Professor an der University of California, San Diego, und ab 1990 an der Princeton University. Dort ist er Eugene Higgins Professor of Physics.

Werk

Haldane untersuchte die Quantentheorie des Magnetismus in Festkörpern und Vielteilchenprobleme in der Festkörperphysik mit nichtstörungstheoretischen Methoden, unter anderem den Quanten-Hall-Effekt, Luttinger-Flüssigkeiten, Anyonen (Teilchen mit ungewöhnlicher Statistik) und eindimensionale integrable Systeme. Zur Erklärung des gebrochenzahligen Quanten-Hall-Effekts schlug er 1982 eine Erweiterung des Modells von Robert Laughlin vor, dessen Wellenfunktion nicht für alle gebrochenzahligen Füllfaktoren definiert war.[2] 1983 schlug er (damals überraschend[3]) die Existenz eines Haldane-Gap (Lücke im Spektrum der Anregungen) für ganzzahlige Spins im eindimensionalen Antiferromagneten vor (die Lücke existiert aber nicht für Spin 1/2 Anregungen).[4] Mit einer Arbeit von 1988 gilt er als Pionier topologischer Festkörper-Phasen, die später mit der Entdeckung Topologischer Isolatoren aktuell wurden.[5] Er führte darin ein Graphen-artiges zweidimensionales Modell ein, das einen Quanten-Hall-Effekt bei Abwesenheit äußerer Magnetfelder zeigte. Das Modell wurde 2005 von Charles Kane in seiner Pionierarbeit zu Topologischen Isolatoren aufgegriffen.[6]

Mitgliedschaften und Ehrungen

1993 erhielt er den Oliver E. Buckley Condensed Matter Prize, 2012 die Dirac-Medaille des International Centre for Theoretical Physics und 2016 den Nobelpreis für Physik (zusammen mit D. Thouless und M. Kosterlitz). 1984 bis 1988 war er Sloan Research Fellow. Er ist Fellow der Royal Society, der American Academy of Arts and Sciences (1992), der National Academy of Sciences (2017), der American Association for the Advancement of Science, der American Physical Society und des Institute of Physics.

Von 1990 bis 1999 war er im beratenden Beirat des Aspen Center for Physics und von 1985 bis 1990 dessen Trustee.

Weblinks

Commons: F. Duncan M. Haldane – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. The Nobel Prize in Physics 2016. In: nobelprize.org. Abgerufen am 3. März 2022 (Lua-Fehler in Modul:Multilingual, Zeile 149: attempt to index field 'data' (a nil value)).
  2. F. D. M. Haldane: Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. In: Physical Review Letters. Band 51, 1983, S. 605, doi:10.1103/PhysRevLett.51.605.
  3. Die Existenz masseloser Anregungen war aus dem Bethe-Ansatz bekannt. Da es in einer Dimension aber keine langreichweitige Ordnung gibt, waren dies keine Goldstonebosonen.
  4. F. D. M. Haldane: Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. In: Physics Letters A. Band 93, 1983, S. 464, doi:10.1016/0375-9601(83)90631-X. und F. D. M. Haldane: Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State. In: Physical Review Letters. Band 50, 1985, S. 1153, doi:10.1103/PhysRevLett.50.1153. Siehe Ian Affleck: Quantum spin chains and the Haldane gap. In: J. Phys. (Condens. Matter). Band 1, 1989, S. 3047, doi:10.1088/0953-8984/1/19/001 (Review-Artikel).
  5. F. D. M. Haldane: Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. In: Physical Review Letters. Band 61, 1988, S. 2015, doi:10.1103/PhysRevLett.61.2015.
  6. C. L. Kane, E. J. Mele: $ Z_{2} $ topological order and the quantum spin Hall effect. In: Physical Review Letters. Band 95, 2005, S. 146802, doi:10.1103/PhysRevLett.95.146802, arxiv:cond-mat/0506581.

Die News der letzten Tage

03.02.2023
Quantencomputer
Verschränkte Atome im Innsbrucker Quantennetzwerk
Gefangenen Ionen wurden bisher nur über kurze Distanz im Labor miteinander verschränkt, doch nun haben Teams der Universität Innsbruck zwei Ionen über eine Distanz von 230 Metern Luftlinie miteinander verschränkt.
03.02.2023
Exoplaneten | Biophysik | Astrobiologie
Ein naher, möglicherweise lebensfreundlicher Exoplanet mit Erdmasse
Ein Team von Astronominnenund Astronomen hat einen Exoplaneten von der Masse der Erde entdeckt, der in der habitablen Zone des roten Zwergsterns Wolf 1069 kreist.
02.02.2023
Atomphysik | Geophysik
Sauerstoff in der Hochatmosphäre der Erde
In einer Untersuchung der Zusammensetzung der oberen Atmosphäre der Erde wurde ein erhöhtes Vorkommen von 18O nachgewiesen – einem schwereren Isotop mit 10 anstelle von acht Neutronen wie bei 16O.
01.02.2023
Kometen und Asteroiden
Schlüsseleigenschaften von Asteroiden und Kometen simulieren
Mit Simulationen, die feinere Details modellieren als je zuvor, haben Forscher*innen eine Schlüsselphase bei der Entstehung von Planeten in unserem Sonnensystem modelliert.
02.02.2023
Teilchenphysik | Festkörperphysik | Quantenphysik
Terahertz-Strahlung mit Spinwellen gekoppelt
Ein internationales Forschungsteam hat eine neue Methode zur effizienten Kopplung von Terahertz-Wellen mit deutlich kurzwelligeren, sogenannten Spinwellen entwickelt.
31.01.2023
Satelliten und Sonden | Quantenoptik
Mehr Leistung für die Laserkommunikation im All
Sie fliegen hoch über unseren Köpfen und sind für unsere global vernetzte Welt unabdingbar: Satelliten - Um ihre Daten untereinander sowie mit Bodenstationen auszutauschen, haben sie lange Zeit mit Funkwellen gearbeitet.
26.01.2023
Sterne
Neun neue und exotische Geschöpfe für den Pulsar-Zoo
Neun Millisekunden-Pulsare, die meisten in seltenen und teils ungewöhnlichen Doppelsystemen: Das sind erste Ergebnisse einer gezielten Durchmusterung mit dem MeerKAT-Teleskop in Südafrika.
27.01.2023
Festkörperphysik | Quantenphysik
Erstmals zwei Quantenpunkte gekoppelt
Eine winzig kleine Veränderung bedeutet in der Quantenphysik einen großen Durchbruch: Einem internationalen Forschungsteam aus Bochum und Kopenhagen ist es gelungen, zwei Quantenpunkte in einem Nanochip zu koppeln.
25.01.2023
Teilchenphysik | Elektrodynamik | Quantenoptik
Elektronenpulse mit einer Dauer von nur 53 Attosekunden
Mit ultraschnellen Laserblitzen hat eine Forschungsgruppe in Stuttgart den bisher kürzesten Elektronenpuls erzeugt und gemessen.
26.01.2023
Relativitätstheorie | Quantenphysik | Astrophysik
Ein neuer Ansatz zur Lösung des Rätsels um die Dunkle Energie
Was steckt hinter der Dunklen Energie – und was verbindet sie mit der von Albert Einstein eingeführten kosmologischen Konstanten?
25.01.2023
Thermodynamik | Festkörperphysik | Optik
Neues optisches Beschichtungssystem: Kein Beschlagen und unerwünschte Reflexionen mehr
Optiken, die nicht beschlagen und kaum reflektieren – das ist künftig dank eines neuen optischen Beschichtungssystems möglich.
24.01.2023
Teleskope | Astrophysik | Astrobiologie
James-Webb-Weltraumteleskop identifiziert Herkunft eisiger Bausteine des Lebens
Interstellare Molekülwolken gelten als Wiegen von Planetensystemen: Ein internationales Forschungsteam entdeckt mithilfe des James-Webb-Weltraumteleskops das tiefst gelegene und kälteste Eis, das je in einer solchen Molekülwolke nachgewiesen wurde.