Elektrische Feldstärke

Physikalische Größe
Name Elektrische Feldstärke
Formelzeichen $ {\vec {E}} $
Größen- und
Einheitensystem
Einheit Dimension
SI V·m−1, N·C−1 M·L·I−1·T−3
Gauß (cgs) statV·cm−1 M½·L−½·T−1
esE (cgs) statV·cm−1 M½·L−½·T−1
emE (cgs) abV·cm−1 M½·L½·T

Die physikalische Größe elektrische Feldstärke beschreibt die Stärke und Richtung eines elektrischen Feldes, also die Fähigkeit dieses Feldes, Kraft auf Ladungen auszuüben. Sie ist ein Vektor und ist in einem gegebenen Punkt definiert durch

$ {\vec {E}}={\frac {\vec {F}}{q}}\, $.

$ q $ steht für eine kleine Probeladung, die sich am gegebenen Ort befindet, $ {\vec {F}} $ ist die auf diese Probeladung wirkende Kraft. Diese Definition ist wegen der Proportionalität von Kraft und Ladung sinnvoll.

Die elektrische Feldstärke in der Nähe von zwei gegensinnigen elektrischen Ladungen. Die Länge der Pfeile ist ein Maß für die Feldstärke an ausgewählten Punkten.

Einheit

Die SI-Einheit der elektrischen Feldstärke $ {\vec {E}} $ ist Newton pro Coulomb oder Volt pro Meter. Es gilt:

$ \mathrm {{\frac {N}{C}}={\frac {J}{C\cdot m}}={\frac {V\cdot A\cdot s}{A\cdot s\cdot m}}={\frac {V}{m}}} $

Zusammenhang mit der elektrischen Flussdichte

Ebenfalls zur Beschreibung des elektrischen Feldes verwendet wird die elektrische Flussdichte $ {\vec {D}} $, die über die Materialgleichungen mit der elektrischen Feldstärke $ {\vec {E}} $ verknüpft ist. Im Vakuum gilt die Beziehung

$ {\vec {D}}=\varepsilon _{0}{\vec {E}} $

mit der elektrischen Feldkonstanten $ \varepsilon _{0} $.

Zusammenhang mit dem elektrischen Potential

In vielen Fällen lässt sich die elektrische Feldstärke aus dem zugehörigen Potential berechnen. Die entsprechende Gleichung der Elektrodynamik berücksichtigt sowohl das elektrische Potential als auch das Vektorpotential $ {\vec {A}} $ und deren Zeitabhängigkeit:

$ {\vec {E}}({\vec {r}},t)=-\nabla \Phi ({\vec {r}},t)-{\frac {\partial }{\partial t}}{\vec {A}}({\vec {r}},t) $

Im Rahmen der Elektrostatik vereinfacht sich der Zusammenhang zum negativen Gradienten des skalaren elektrischen Potentials $ \Phi $:

$ {\vec {E}}({\vec {r}})=-\nabla \Phi ({\vec {r}}) $

Umgekehrt ist die Potentialdifferenz (also die elektrische Spannung) zwischen zwei Punkten A und B das Linienintegral (die Aufsummierung) über das Skalarprodukt von elektrischer Feldstärke und Linienelement auf dem (in der Elektrostatik beliebigen) Integrationsweg von A nach B:

$ U_{AB}=\Phi ({\vec {r}}_{A})-\Phi ({\vec {r}}_{B})=\int _{r_{A}}^{r_{B}}{\vec {E}}\cdot \mathrm {d} {\vec {s}}\, $.

In einem homogenen elektrischen Feld (d. h. mit parallelen Feldlinien), wie es näherungsweise in einem Plattenkondensator auftritt, entspricht dies der vereinfachten Beziehung

Spannung = Feldstärke × Weg.

Beispiel: Zwischen zwei Platten eines Kondensators mit dem Abstand 0,1 mm und der Feldstärke 50 kV/m besteht eine Spannung von 5 V.

Größenbeispiele

Bereich Elektrische Feldstärke[1]
Atmosphäre 100 bis 200 V/m
in der 230V-Steckdose bis 15 kV/m
Durchschlagfestigkeit der Luft 3 MV/m
Kondensator 1 bis 10 MV/m

Literatur

  • Adolf J. Schwab: Begriffswelt der Feldtheorie: Praxisnahe, anschauliche Einführung. Elektromagnetische Felder, Maxwellsche Gleichungen, Gradient, Rotation, Divergenz. 6. Auflage. Springer, Berlin 2002, ISBN 3-540-42018-5.

Weblinks

Wikibooks: Einführung in die Theoretische Physik – Ein Lehrbuch in mehreren Bänden, 8. Teil Elektrostatik – Lern- und Lehrmaterialien

Einzelnachweise

  1. Altmann/Schlayer, 2003, S. 34

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.