Wenn die Erde flüssig wäre

Physik-News vom 09.10.2019


Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu charakterisieren. Was sind die optimalen Bedingungen, um so kleine Planeten draussen im All zu finden? «Ein Gesteinsplanet, der heiss und geschmolzen ist und womöglich eine ausgedehnte Gasatmosphäre besitzt, erfüllt die Kriterien», sagt Dan Bower, Astrophysiker am Center for Space and Habitability (CSH) der Universität Bern. Aufgrund der starken Abstrahlung könnten Teleskope einen solchen Planeten leichter aufspüren als ein festes Pendant.


Künstlerische Darstellung des Inneren eines heissen, geschmolzenen Gesteinsplaneten.

Publikation:


Dan J. Bower et al.
Linking the evolution of terrestrial interiors and an early outgassed atmosphere to astrophysical observations
Astronomy & Astrophysics

DOI: 10.1051/0004-6361/201935710



«Zugegeben, niemand möchte auf einem dieser Planeten Ferien machen», sagt der CSH- und SNF-Ambizione-Fellow: «Aber die Untersuchung dieser Objekte ist wichtig, da viele, wenn nicht sogar alle Gesteinsplaneten ihr Leben als geschmolzene Brocken beginnen. Einige davon könnten irgendwann bewohnbar werden wie die Erde

Gesteinsplaneten werden aus den Resten aller Resten gebildet. «Alles, was nicht in den Zentralstern oder einen Riesenplaneten gelangt, hat das Potenzial, einen viel kleineren, terrestrischen Planeten zu formen», sagt Bower: «Wir haben Grund zur Annahme, dass Prozesse während der Babyjahre eines Planeten für seinen späteren Lebensweg entscheidend sind.» Daher wollten Bower und ein Team von Post-Docs des Forschungsschwerpunkts PlanetS die beobachtbaren Charakteristiken eines solchen Planeten aufdecken. Ihre Studie ist nun in der Zeitschrift Astronomy & Astrophysics erschienen. Sie zeigt, dass eine geschmolzene Erde einen um etwa 5% grösseren Radius hätte als eine feste Erde. Denn unter den extremen Bedingungen im Planeteninneren verhält sich geschmolzenes Material anders als festes. «Im Wesentlichen nimmt ein geschmolzenes Silikat mehr Volumen ein als der entsprechende Festkörper, und das macht den Planeten grösser», erklärt Bower.

Ein Unterschied, den CHEOPS erkennen kann

Bei der Charakterisierung von Exoplaneten ausserhalb unseres Sonnensystems und der Suche nach möglicherweise bewohnbaren Welten zählen die Forschenden der Universität Bern zur Weltspitze. Einen erdgrossen Gesteinsplaneten bei einem hellen, sonnenähnlichen Stern wird man allerdings nicht vor dem Start der Raumsonde PLATO im Jahr 2026 aufspüren. Doch inzwischen interessieren sich die Forschenden vor allem für Planeten, die kühlere, kleinere Sterne wie die Roten Zwerge Trappist-1 oder Proxima b umkreisen. Interessanterweise kann eine fünfprozentige Differenz bei den Planetenradien bereits mit aktuellen und künftigen Beobachtungsinstrumenten gemessen werden, insbesondere mit dem Weltraumteleskop CHEOPS, das in Bern entwickelt und zusammengebaut wurde und noch in diesem Jahr starten wird.

Tatsächlich deuten die neuesten Daten darauf hin, dass geschmolzene Planeten mit kleiner Masse, deren Temperatur durch das intensive Licht vom Stern über lange Zeit hoch bleibt, im Katalog der Exoplaneten bereits vorhanden sind. Einige Exoplaneten könnten also ähnliche Bausteine wie die Erde haben, aber unterschiedliche Mengen an festem und geschmolzenem Gestein, was die beobachteten Abweichungen in der Planetengrösse erklären würde. «Sie müssen nicht unbedingt aus exotischen, leichten Materialien bestehen, um die Daten zu erklären», sagt Bower.

Aber selbst ein völlig geschmolzener Planet bietet möglicherweise keine Erklärung für die extremsten geringen Dichtewerte, die beobachtet wurden. Doch auch dafür hat das Forschungsteam einen Vorschlag: In ihrer frühen Entwicklung können geschmolzene Planeten durch Entgasung von Magma mächtige Atmosphären aus flüchtigen Bestandteilen bilden, die ursprünglich in der Schmelze gelöst waren. Dies könnte eine zusätzliche Abnahme der beobachteten Planetendichte erklären. Das Weltraumteleskop'>James-Webb-Weltraumteleskop (JWST) sollte in der Lage sein, eine solche Atmosphäre auf einem Planeten um einen kühlen Roten Zwergstern zu erkennen, wenn diese vor allem Wasser oder Kohlendioxid enthält.

Neben den Konsequenzen für die Beobachtungen sieht Bower als Erdwissenschaftler seine Studie in einem breiteren Kontext: «Unsere eigene Erde können wir natürlich nicht beobachten, als sie heiss und geschmolzen war. Aber die Exoplaneten-Forschung eröffnet uns die Möglichkeit, Entsprechungen der jungen Erde und der jungen Venus aufzuspüren.» Das könnte für neue Erkenntnisse über die Erde und die anderen Planeten in unserem Sonnensystem sehr wichtig werden. Betrachtet man die Erde im Kontext von Exoplaneten und umgekehrt, bieten sich neue Möglichkeiten, die Planeten innerhalb und ausserhalb des Sonnensystems zu verstehen.

Berner Weltraumforschung: Seit der ersten Mondlandung an der Weltspitze

Als am 21. Juli 1969 Buzz Aldrin als zweiter Mann auf dem Mond aus der Mondlandefähre stieg, entrollte er als erstes das Berner Sonnenwindsegel und steckte es noch vor der amerikanischen Flagge in den Boden des Mondes. Dieses Solarwind Composition Experiment (SWC), welches von Prof. Dr. Johannes Geiss und seinem Team am Physikalischen Institut der Universität Bern geplant und ausgewertet wurde, war ein erster grosser Höhepunkt in der Geschichte der Berner Weltraumforschung.

Die Berner Weltraumforschung ist seit damals an der Weltspitze mit dabei. In Zahlen ergibt dies eine stattliche Bilanz: 25mal flogen Instrumente mit Raketen in die obere Atmosphäre und Ionosphäre (1967-1993), 9mal auf Ballonflügen in die Stratosphäre (1991-2008), über 30 Instrumente flogen auf Raumsonden mit, und mit CHEOPS teilt die Universität Bern die Verantwortung mit der ESA für eine ganze Mission (Start letztes Quartal 2019).

Die erfolgreiche Arbeit der Abteilung Weltraumforschung und Planetologie (WP) des Physikalischen Instituts der Universität Bern wurde durch die Gründung eines universitären Kompetenzzentrums, dem Center for Space and Habitability (CSH), gestärkt. Der Schweizer Nationalsfonds sprach der Universität Bern zudem den Nationalen Forschungsschwerpunkt (NFS) PlanetS zu, den sie gemeinsam mit der Universität Genf leitet.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

Mehr zu den Themen

25.09.2022
Sonnensysteme | Kometen und Asteroiden | Geophysik

Untersucht: Bodenproben des Asteroiden Ryugu
Ein internationales Forschungsteam hat Bodenproben untersucht, die die japanische Raumsonde Hayabusa-2 auf dem Asteroiden Ryugu einsammelte.
17.10.2019
Satelliten und Sonden | Wellenlehre | Geophysik

Dank Hochfrequenz wird Kommunikation ins All möglich
Wir nutzen sie jeden Tag: Niederfrequenzen - über einzelne oder mehrere Antennen mit verschiedenen Frequenzhöhen.
21.10.2019
Strömungsmechanik | Geophysik

Wie ein Molekül das Klima verändern kann
Wolken entstehen aus Wassertröpfchen, die sich um Aerosolpartikel in der Atmosphäre bilden.
27.11.2019
Strömungsmechanik | Geophysik

Genaue Messungen als Grundlage für die Genehmigung von Windenergieanlagen
PTB verbessert Verfahren, um den Einfluss von Windrädern auf Navigationseinrichtungen der Luftfahrt deutlich genauer zu bestimmen.
16.09.2019
Geophysik

Geochemiker messen neue Zusammensetzung des Erdmantels
Wie ist das Innere der Erde chemisch aufgebaut?
08.11.2019
Strömungsmechanik | Geophysik

Turbulenz sorgt für Eis in Wolken
Vertikale Luftbewegungen erhöhen die Eisbildung in Mischphasenwolken.
05.12.2019
Strömungsmechanik | Geophysik

Neue Klimadaten dank kompaktem Alexandritlaser
Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter.
20.08.2019
Sonnensysteme | Geophysik

Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems
Bei gewaltigen Sternenexplosionen entsteht das seltene Isotop Eisen-60.
01.05.2019
Geophysik

Rätsel um „unsichtbares“ Gold entschlüsselt
In der größten Goldlagerstätte der USA in Nevada kommt Gold nicht in Form von Nuggets vor.
05.06.2019
Elektrodynamik | Geophysik

Magnetismus im Erdmantel entdeckt
Das riesige Magnetfeld, das die Erde umgibt, sie vor Strahlen und geladenen Teilchen aus dem All schützt und an dem sich viele Tiere sogar orientieren können, ist in ständigem Wandel – weshalb es auch unter ständiger Beobachtung von Geowissenschaftlern ist.
29.10.2019
Strömungsmechanik | Geophysik

Herausforderungen in der Windenergieforschung
Welche Innovationen sind erforderlich, damit Wind zu einer der weltweit wichtigsten Quellen für kostengünstige Stromerzeugung werden kann?
25.06.2019
Geophysik | Geschichte der Physik

Internationales Team rekonstruiert erstmals Eiskeime von Wolken der Arktis der vergangenen 500 Jahre
Erstmals hat ein internationales Forschungsteam unter Leitung des Leibniz-Institut für Troposphärenforschung (TROPOS) Eiskeime der Atmosphäre aus Eisbohrkernen untersucht, die Hinweise zur Art der Bewölkung der letzten 500 Jahre in der Arktis geben.
11.04.2018
Geophysik

Stärkere Belege für Abschwächung des Golfstromsystems
Die als Golfstromsystem bekannte Umwälzströmung im Atlantik – eines der wichtigsten Wärmetransportsysteme der Erde, das warmes Wasser nach Norden und kaltes Wasser nach Süden pumpt – ist heute schwächer als je zuvor in den vergangenen 1000 Jahren.
13.06.2019
Satelliten und Sonden | Geophysik

Schwerefeldbestimmung der Erde so genau wie noch nie
Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde.
02.11.2022
Planeten | Geophysik

Neue Daten sprechen für Magma auf dem Mars
Bisher wurde der Mars als geologisch toter Planet angesehen, doch seismische Wellen deuten nun darauf hin, dass die Marsoberfläche immer noch von Vulkanismus geprägt wird.
01.10.2019
Geophysik

Frühe Warnsignale vor fatalem Kollaps des Krakatau-Vulkans
Am 22.
21.02.2020
Geophysik

Wie Erdbeben die Schwerkraft verformen
Forschende des Deutschen GeoForschungsZentrums GFZ in Potsdam haben einen Algorithmus entwickelt, der erstmals mit hoher Genauigkeit ein durch Erdbeben verursachtes Gravitationssignal beschreiben kann.
27.09.2022
Geophysik

Wasser hunderte Kilometer tief: Ozean im Erdinnern?
Die Übergangszone zwischen oberem und unterem Erdmantel enthält erhebliche Mengen Wasser.
29.08.2019
Exoplaneten | Monde | Geophysik

Hinweise auf vulkanisch aktiven Exo-Mond
Ein Mond aus Gestein und brodelnder Lava umkreist möglicherweise einen Planeten 550 Lichtjahre von uns entfernt.
19.10.2022
Strömungsmechanik | Geophysik

Wärmere Ozeane - höhere Niederschlagsmenge
Die Erwärmung der oberen Ozeanschichten im westlichen tropischen Pazifik wird künftig zu stärkeren Winden und mehr Regen über Ostasien führen.
26.10.2022
Strömungsmechanik | Geophysik

Neue Windfeldmodelle bilden Böen korrekt ab
Mit einem neuen statistischen Modell ist es Forschenden gelungen, turbulente Schwankungen des Windes deutlich realistischer abzubilden, als es bisher möglich war.
09.10.2019
Exoplaneten | Geophysik

Wenn die Erde flüssig wäre
Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück.
31.07.2019
Geophysik

Wie man erkennt, wo ein Vulkan ausbricht
Forschende des Deutschen GeoForschungsZentrums GFZ testen innovative Methode zur Vorhersage neuer Schlote im italienischen Vulkangebiet "Campi Flegrei" nahe Neapel.
01.11.2022
Planeten | Wellenlehre | Geophysik

Was Wellen über die Marskruste verraten
Nach zwei grossen Meteoriteneinschlägen auf dem Mars beobachteten Forschende erstmals ausserhalb der Erde seismische Wellen, die sich entlang der Oberfläche eines Planeten ausbreiteten.