Version vom 22. Februar 2020, 10:27 Uhr von imported>Ra-raisch
Die Rydberg-Formel (auch Rydberg-Ritz-Formel) wird in der Atomphysik benutzt, um das Linienspektrum des vom Wasserstoff emittierten Lichtes zu bestimmen. Sie zeigt, dass die Bindungsenergie des Elektrons im Wasserstoffatom umgekehrt proportional zum Quadrat der Hauptquantenzahl ist.
Die Formel wurde am 5. November 1888 vom schwedischen Physiker Johannes Rydberg vorgestellt; auch Walter Ritz arbeitete an ihr.
Korrekturen aufgrund von Drehimpulsen oder relativistischen Effekten werden in der Rydberg-Formel nicht berücksichtigt. Später wurde sie erweitert, um das Spektrum anderer Elemente zu bestimmen (s. u. Erweiterungen).
Rydberg-Formel für Wasserstoff
Formulierung
- $ {\frac {1}{\lambda _{\mathrm {vac} }}}=R\left({\frac {1}{n_{1}^{2}}}-{\frac {1}{n_{2}^{2}}}\right) $
Dabei sind
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda_{\mathrm{vac}}
die Wellenlänge des Lichts im Vakuum
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R
die Rydberg-Konstante für das jeweilige Element: $ R={\frac {R_{\infty }}{1+{\frac {m_{\mathrm {e} }}{M}}}} $ mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_\mathrm e
die Masse des Elektrons
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M
die Kernmasse (abhängig vom vorliegenden Isotop)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R_\infty
die Rydberg-Konstante für unendliche Kernmasse. Da
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} m_\mathrm e &\ll M_\mathrm{min} = m_\mathrm{proton}\ (\mathrm{Faktor} < 0{,}00055)\\ \Rightarrow \frac{m_\mathrm e} M &\ll 1\\ \Rightarrow 1 + \frac{m_\mathrm e} M &\approx 1\\ \Rightarrow R &\approx R_{\infty} \end{align}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_1
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_2
ganzzahlige Werte der Hauptquantenzahl (mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_1 < n_2
): Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_2
ist die Quantenzahl des Orbits, von dem aus das Elektron in den tiefer gelegenen Orbit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_1
übergeht – also etwa vom dritten Orbit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_2 = 3
in den zweiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_1 = 2
(siehe Bohrsches Atommodell).
Energie
Für die Energie des emittierten Photons gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \frac{1}{\lambda_{\mathrm{vac}}} \cdot c \cdot h
mit
- Lichtgeschwindigkeit $ c $ im Vakuum
- Planckscher Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h
.
Entsprechend gilt für die Energiestufen der beiden o. g. Orbits im Atom (siehe Rydberg-Energie):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_1 = \frac R {n_1^2} \cdot c \cdot h
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_2 = \frac R {n_2^2} \cdot c \cdot h
.
Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_1 < n_2
folgt daraus:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow E_1 > E_2
.
Nachdem die Bedeutung der Hauptquantenzahl $ n $ im Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac R {n^2}
für die Energieniveaus erkannt worden war, bürgerten sich die Begriffe Termsymbol und Termschema für damit zusammenhängende Werkzeuge ein.
Spektrallinien-Serien
Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_1 = 1
(Grundzustand) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_2 \in (2..\infty)
erhält man eine Serie von Spektrallinien, die auch Lyman-Serie genannt wird. Der erste Übergang der Serie hat eine Wellenlänge von 121 nm, die Seriengrenze liegt bei 91 nm. Analog ergeben sich die anderen Serien:
Fehler beim Erstellen des Vorschaubildes:
Energieniveaus des Wasserstoffspektrums
| $ n_{1} $
|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_2
|
Name
|
Wellenlänge des ersten Übergangs (α-Linie)
|
konvergiert gegen Seriengrenze
|
| 1
|
2 bis ∞
|
Lyman-Serie
|
121 nm
|
91,13 nm
|
| 2
|
3 bis ∞
|
Balmer-Serie
|
656 nm
|
364,51 nm
|
| 3
|
4 bis ∞
|
Paschen-Serie
|
1.874 nm
|
820,14 nm
|
| 4
|
5 bis ∞
|
Brackett-Serie
|
4.051 nm
|
1458,03 nm
|
| 5
|
6 bis ∞
|
Pfund-Serie
|
7.456 nm
|
2278,17 nm
|
| 6
|
7 bis ∞
|
Humphreys-Serie
|
12.365 nm
|
3280,56 nm
|
Erweiterungen
Für wasserstoffähnliche Atome
Für wasserstoffähnliche Ionen, d. h. Ionen, die nur ein einziges Elektron besitzen, wie z. B. He+, Li2+, Be3+ oder Na10+, lässt sich obige Formel erweitern zu:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{\lambda_{\mathrm{vac}}} = Z^2 R \left( \frac{1}{{n'}_1^2} - \frac{1}{{n'}_2^2} \right)
mit
- der Kernladungszahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z
, d. h. der Anzahl der Protonen im Atomkern
- die um den Quantendefekt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \delta_n
korrigierten effektiven Hauptquantenzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n'_i = n_i - \delta_n
.
Für Atome mit einem Valenzelektron
Eine weitere Verallgemeinerung auf die Lichtemission von Atomen, die in ihrer äußersten Schale ein einzelnes Elektron besitzen, darunter aber evtl. weitere Elektronen in abgeschlossenen Schalen, führt zum Moseleyschen Gesetz.
Literatur
Weblinks