Gibbs-Helmholtz-Gleichung

Gibbs-Helmholtz-Gleichung

Version vom 11. Januar 2022, 21:35 Uhr von imported>Qcomp (Gleichung mit G war korrekt; Änderung 219018090 von 137.226.237.162 rückgängig gemacht;)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Gibbs-Helmholtz-Gleichung (auch Gibbs-Helmholtzsche Gleichung) ist eine Gleichung der Thermodynamik. Sie ist benannt nach dem US-amerikanischen Physiker Josiah Willard Gibbs und dem deutschen Physiologen und Physiker Hermann von Helmholtz. Sie beschreibt den Zusammenhang zwischen der Gibbs-Energie $ G $ und der Enthalpie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H in Abhängigkeit von der Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T . Die Gibbs-Helmholtz-Gleichung lautet allgemein:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left. \frac{\partial} {\partial T} \frac{G} {T} \right|_{p} = - \frac {H} {T^2}

Das Symbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \partial/(\partial T) steht für eine partielle Ableitung nach der Temperatur und die Schreibweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |_p bedeutet, dass der Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p in dieser Gleichung in allen vorkommenden Größen konstant gehalten wird. Im Folgenden wird dies in der Notation nicht weiter explizit erwähnt.

Auch die Beziehung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta G = \Delta H - T \Delta S , eigentlich nur eine Legendre-Transformation, die die Beziehung zwischen der Gibbs-Energie, der Enthalpie, der Temperatur und der Entropie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S beschreibt, wird in einigen Literaturstellen als Gibbs-Helmholtz-Gleichung bezeichnet. Beide Formen sind äquivalent, da sie sich durch mathematische Operationen der Differentialrechnung (und der Verwendung des physikalischen Zusammenhangs zwischen Temperatur, Entropie und Gibbs-Energie) ineinander überführen lassen. Diese Form spielt eine zentrale Rolle bei der Betrachtung des chemischen Gleichgewichts, da sie es erlaubt, den Einfluss von Enthalpie und Entropie auf die Gibbs-Energie direkt miteinander zu vergleichen (siehe exergone und endergone Reaktion). Mit ihr lässt sich abschätzen, welche Seite des Gleichgewichts thermodynamisch bevorzugt ist.

Herleitung

Die Enthalpie und die Gibbs-Energie lassen sich über eine Variablentransformation, genauer über die Legendre-Transformation ineinander transformieren:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H(S,p) = G(T,p) + TS

Das totale Differential der Gibbs-Energie ist bei festgehaltener Teilchenzahl

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm dG = -S \mathrm dT + V \mathrm dp ,

sodass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S = - \tfrac{\partial G}{\partial T} . Es folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial}{\partial T} \frac{G}{T} = - \frac{G}{T^2} + \frac{1}{T} \frac{\partial G}{\partial T} = - \frac{H}{T^2} + \frac{S}{T} - \frac{S}{T} = - \frac{H}{T^2}

Zusammenhang mit der Van-’t-Hoff-Gleichung

Die Van-’t-Hoff-Gleichung beschreibt in der Thermodynamik den Zusammenhang zwischen der Lage des Gleichgewichts einer chemischen Reaktion und der Temperatur bei konstantem Druck. Für die Gleichgewichtskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): K einer chemischen Reaktion und die Änderung der freien Enthalpie bei der Reaktion bei Standardbedingungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_R G^0 gilt allgemein

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ln K = - \frac {\Delta_R G^0}{R T}

mit der allgemeinen Gaskonstante $ R $. Die Gibbs-Helmholtz-Gleichung führt direkt auf die Van-’t-Hoff-Gleichung:[2]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial \ln K}{\partial T} = - \frac{1}{R} \frac{\partial}{\partial T} \frac{\Delta_R G^0}{T} = \frac{\Delta_R H^0}{R T^2}

Weitere Schreibweisen

Die Gibbs-Helmholtz-Gleichung lässt sich als Funktion der inversen Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta = (k_\mathrm B T)^{-1} mit der Boltzmann-Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k_\mathrm B als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial (\beta G)}{\partial \beta} = H(\beta)

darstellen.[1] Dies folgt aus der Kettenregel der Differentialrechnung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\partial (\beta G)}{\partial \beta} = G + \beta \frac{\partial G}{\partial \beta} = G - (k_\mathrm B T)^{-1} (k_\mathrm B T^2) \frac{\partial G}{\partial T} = G + TS = H

Einzelnachweise

  1. 1,0 1,1 J. A. Campbell: Allgemeine Chemie. Verlag Chemie, Weinheim 1975, S. 774–775.
  2. J. A. Campbell: Allgemeine Chemie. Verlag Chemie, Weinheim 1975, S. 812.