Resultierende Kraft

Resultierende:
a) der Lageplan mit Kräften F1 und F2 und der Resultierenden FR
b) Krafteck zur Ermittlung der Resultierenden
c) alternativ zu b): das Kräfteparallelogramm
d) Kräftepaar – Resultierende gleich null, aber Drehmoment ungleich null

Die resultierende Kraft (kurz Resultierende oder Resultante) ist in der Mechanik die Vektorsumme von Kräften, Streckenlasten, Flächenlasten und Volumenkräften die an einem physikalischen System am gleichen oder an verschiedenen Punkten angreifen. Im Fall von nur einer Einzelkraft ist die Resultierende identisch mit dieser Kraft. Im Fall von genau zwei nichtparallelen Einzelkräften ist sie durch die Diagonale des zugehörigen Kräfteparallelogramms gegeben.

Greifen alle Kräfte am gleichen Punkt an, reagiert das System so, als ob nur die resultierende Kraft an diesem Punkt angreifen würde. Greifen die Kräfte an verschiedenen Punkten an, reagiert der Massenmittelpunkt des Systems so, als ob an ihm nur die resultierende Kraft angreifen würde (Schwerpunktsatz). Im Fall, dass die resultierende Kraft null ist, bewegt sich der Massenmittelpunkt also gar nicht oder behält seine geradlinig-gleichförmige Bewegung bei. Unabhängig davon können die Kräfte aber ein Drehmoment ausüben, das die drehende Bewegung des Systems beeinflusst. Bekanntestes Beispiel hierfür ist das Kräftepaar. Hier ist die resultierende Kraft null.

Ist das System ein Starrer Körper und schneiden sich die Wirkungslinien der einzelnen Kräfte in einem Punkt, dann hat die resultierende Kraft, wenn sie in diesem Schnittpunkt angreift, in jeder Hinsicht die gleiche Wirkung auf den Körper wie alle einzelnen Kräfte zusammen (siehe Statische Äquivalenz).[1][2][3][4]

Allgemeines Verfahren zur Bestimmung der Resultierenden

Die Resultierende wird durch Vektoraddition bestimmt:
$ \mathbf {R} =\left[\sum _{i}^{n}\mathbf {F} _{i}\right]+\left[\sum _{i}^{m}\int _{x}\mathbf {q} _{i}(x)\mathrm {d} x\right]+\left[\sum _{i}^{o}\iint _{A}{\boldsymbol {\sigma }}_{i}(x,y)\mathrm {d} x\mathrm {d} y\right]+\left[\sum _{i}^{p}\iiint _{V}{\boldsymbol {\gamma }}_{i}(x,y,z)\mathrm {d} x\mathrm {d} y\mathrm {d} z\right]\quad {\textrm {mit}}\quad {n,m,o,p}\in \mathbb {N} _{0} $
mit

  • $ \mathbf {R} $ der Resultierenden
  • $ \mathbf {F} _{i} $ Einzelkraft i
  • $ \mathbf {q} _{i}(x) $ die Streckenlast i
  • $ {\boldsymbol {\sigma }}_{i}(x,y) $ den Traktionsvektor i
  • $ {\boldsymbol {\gamma }}_{i}(x,y,z) $ die Volumenkraft i

Verfahren zur Bestimmung der Resultierenden von Einzelkräften

Die Resultierende wird durch Vektoraddition bestimmt:
$ \mathbf {R} =\sum _{i}^{n}\mathbf {F} _{i}\quad {\textrm {mit}}\quad n\in \mathbb {N} _{0} $[5]
Dazu existieren verschiedene Verfahren.

Analytisches Verfahren

Analytisch wird die Resultierende aus folgenden Bedingungen ermittelt:

  • Die Komponenten der Resultierenden bezüglich eines kartesischen Koordinatensystems sind gleich der Summe der Komponenten der Einzelkräfte und
  • die Komponenten des Momentes der Resultierenden in Bezug auf einen beliebigen Punkt sind gleich der Summe der Komponenten der Momente der Einzelkräfte.

Wenn die vektorielle Summe der Einzelkräfte verschwindet, so ist die resultierende Kraft gleich null. Das ist z. B. bei einem Kräftepaar der Fall (Abbildung d.); es verbleibt ein Einzelmoment, wobei das Hebelgesetz gilt.

Grafische Verfahren

Zur grafischen Ermittlung der Resultierenden zweier Kräfte benutzt man das Krafteck (Abbildung b.) oder das Kräfteparallelogramm (Abbildung c.).

Das Drei-Kräfte-Verfahren dient der Ermittlung der Resultierenden bzw. der Bestimmung einer dritten, unbekannten Kraft, wenn zwei von drei Kräften bekannt sind. Die Resultierende bei zwei oder mehr Kräften kann man z. B. auch mit Hilfe des Seileckverfahrens ermitteln.

Das Vier-Kräfte Verfahren nach Karl Culmann dient ebenso wie der Cremonaplan zur zeichnerischen Bestimmung der resultierenden Balken- bzw. Stabkräfte, beispielsweise bei der Bemessung von Fachwerken.

Einzelnachweise

  1. Dankert, Dankert: Technische Mechanik, Springer, 7. Auflage, 2013, S. 20.
  2. Böge: Technische Mechanik, Springer, 31. Auflage, S. 38.
  3. Gross, Hauger, Schröder, Wall: Technische Mechanik - Statik,Springer, 11. Auflage, 2011, S. 50.
  4. Böge (Hrsg.): Handbuch Maschinenbau, Springer, 21. Auflage, 2013, S. B12f.
  5. Mahir Sayir, Jürg Dual, Stephan Kaufmann, Edoardo Mazza: Ingenieurmechanik 1: Grundlagen und Statik. Springer-Verlag, 2015, ISBN 978-3-658-10047-6 (google.at [abgerufen am 7. Dezember 2019]).

Die News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.