Raumladung

Die Artikel Raumladung, Raumladungsgesetz und Schottky-Gleichung überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. 141.34.3.113 17:41, 25. Okt. 2013 (CEST)
Abb. 1: Blitze sind Entladungen von Raumladungen, die sich in den Wolken aufgebaut haben

Als Raumladung bezeichnet man eine in einem nichtleitenden Medium räumlich verteilte elektrische Ladung. Sie wird durch einen Überschuss negativer oder positiver Ladungsträger verursacht.

Raumladungen sind in Räumen wichtig, in denen sich geladene Teilchen in bestimmter Weise bewegen sollen. Raumladungseffekte treten in vielen elektronischen Bauelementen auf, z. B. in Elektronenröhren, Halbleiterdioden sowie Transistoren, und haben entscheidenden Einfluss auf deren elektronische Eigenschaften.

Auch in Elektronen- und Ionenquellen sowie in Teilchenbeschleunigern spielen Raumladungseffekte eine wichtige Rolle. Hier sind die mit den Raumladungen verbundenen elektrischen Felder häufig unerwünscht, da sie die erreichbare Qualität wichtiger Strahleigenschaften wie Intensität oder Energieschärfe begrenzen.

Beim Entwurf von Gas- und Glimmentladungsröhren müssen Raumladungen berücksichtigt werden.

In der Natur können durch die Bewegung von Wassertropfen und Eiskristallen in Gewitterwolken Raumladungen entstehen, die sich in Form von Blitzen entladen.

Raumladungen in Elektronenröhren

Abb. 2: Vakuumdiode mit Elektronenwolke
Abb. 3: Strom-Spannungs-Kennlinie der Vakuumdiode. Gestrichelt: Sättigungsströme für drei verschiedene Kathoden-Temperaturen

In Elektronenröhren werden Raumladungen durch Glühkathoden erzeugt (Edison-Richardson-Effekt). Um unerwünschte Wechselwirkungen der erzeugten Elektronen mit Gas zu vermeiden und um die Glühkathode zu schonen, werden die Röhren im Vakuum betrieben.

Die in einer Röhre auftretenden Raumladungseffekte sind in Abb. 2 am Beispiel einer einfachen Röhrendiode dargestellt. Die von der Glühkathode der Röhre emittierten Elektronen werden zur Anode abgezogen. Dabei erzeugen die Elektronen selbst elektrische Felder und verzerren so die durch die Anodenspannung verursachte Feldverteilung erheblich.

Raumladungsbegrenzter Anodenstrom

Dies kann soweit gehen, dass am Entstehungsort der Elektronen (der Glühkathode) kein Feld mehr ankommt, da es bereits vorher durch die Raumladungen abgefangen wird. In diesem Fall ist der Anodenstrom nicht mehr abhängig von der Anzahl der von der Kathode emittierten Elektronen, sondern nur noch von der Anodenspannung. Diesen Bereich der Strom-Spannungs-Kennlinie bezeichnet man als raumladungsbegrenzten Strom (s. Abb. 3).

Berechnung

Der Anodenstrom $ I_{\mathrm {a} } $ bzw. die Stromdichte $ j $ lassen sich durch das Langmuir’sche bzw. Langmuir-Child’sche Raumladungsgesetz berechnen:

$ I_{\mathrm {a} }=jS={\frac {4}{9}}\varepsilon _{0}{\sqrt {\frac {2e}{m_{\mathrm {e} }}}}{\frac {S{U_{\mathrm {a} }}^{3/2}}{d^{2}}} $.

mit

  • der bestrahlten Anodenfläche $ S $
  • der Vakuum-Dielektrizitätskonstante $ \varepsilon _{0} $
  • der Elementarladung $ e $
  • der Elektronenmasse $ m_{\mathrm {e} } $
  • der Anodenspannung $ U_{\mathrm {a} } $
  • dem Abstand $ d $ zwischen Kathode und Anode.

Die Gleichung gilt unter folgenden (nur näherungsweise gültigen) Annahmen:

  1. Das elektrische Feld ist homogen, d. h. die beiden Elektroden sind planare, parallele Äquipotenzialflächen jeweils unendlicher Ausdehnung
  2. Die Elektronen haben beim Austritt aus der Kathode die Geschwindigkeit Null
  3. Zwischen den Elektroden befinden sich nur Elektronen
  4. Der Strom ist raumladungsbegrenzt
  5. Es herrscht ein eingeschwungener Zustand; insbesondere hat sich die Anodenspannung innerhalb der Einschwingzeit nicht geändert.

Sättigungsstrom

Bei großen Anodenspannungen lässt sich durch Erhöhung der Anodenspannung kein zusätzlicher Anodenstrom abziehen. Dieser Sättigungsstrom wird dann erreicht, wenn die Anodenspannung so groß ist, dass sie nicht durch die Raumladung kompensiert werden kann. In diesem Fall werden alle Elektronen, die die Kathode erzeugt, abgesaugt. Der Sättigungsstrom ist daher umso größer, je mehr Elektronen die Kathode emittiert (in Abb. 3 schematisch dargestellt durch drei gestrichelte Sättigungskennlinien für jeweils verschiedene Kathodentemperaturen).

Zwischen Kathode und Anode ergibt sich eine positionsabhängige Dichteverteilung der Elektronen, die sich selbstständig so einregelt, dass die Stromdichte überall gleich ist. So führt z. B. ein Absinken der Stromdichte in einem bestimmten Bereich sofort dazu, dass sich hier zusätzlich Raumladung ansammelt, welche den Durchgriff der Anodenspannung auf die davorliegende Ladung abschirmt, sodass die Stromdichte auch dort soweit absinkt, bis sich ein Gleichgewichtszustand eingestellt hat.

Raumladungen in Halbleiterbauelementen

  • Die Entstehungsmechanismen und Auswirkungen von Raumladungszonen in Halbleiterbauelementen (Diode, Transistor) sind im Hauptartikel p-n-Übergang beschrieben.
  • Ähnliche Effekte treten auch in Halbleiter-Metall-Übergängen auf (Schottky-Diode).

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.