Ozonschicht

Absorption der UV-Strahlung durch die Ozonschicht (37 DU/km = 1013 Moleküle/cm3)
Abhängigkeit der Ozonkonzentration von der geographischen Breite und der Höhe

Die Ozonschicht ist ein Bereich erhöhter Konzentration des Spurengases Ozon (O3) in der Erdatmosphäre, hauptsächlich in der unteren Stratosphäre. Es entsteht dort aus dem Luftsauerstoff, indem dessen Moleküle O2 durch den energiereichsten Anteil des Sonnenlichts (UV-C) zu Sauerstoffatomen gespalten werden. Die Atome verbinden sich dann sofort mit je einem weiteren O2 zu O3.

Ozon selbst ist viel lichtempfindlicher als O2. Es absorbiert UV-C und UV-B und schützt damit Pflanzen, Organismen, Tiere und Menschen vor Strahlenschäden. Wenn ein Ozon-Molekül ein UV-Photon absorbiert, wird es zwar gespalten, aber in den allermeisten Fällen bildet das freigesetzte O-Atom sofort wieder Ozon. Nur die Ausnahmen, hauptsächlich O + O3 → 2 O2, bedeuten einen Verlust von Ozon.

Ozon hat großen Einfluss auf die Temperatur der Stratosphäre, einerseits über die UV-Absorption, andererseits ist es als gewinkeltes Molekül IR-aktiv und strahlt damit Wärme ab.

Als Entdecker der Ozonschicht gelten die französischen Physiker Charles Fabry und Henri Buisson. Sie wiesen 1913 durch UV-spektroskopische Messungen Ozon in höheren Atmosphärenschichten nach.

Globale Verteilung

Die effektive Lebensdauer des Ozons ist groß genug, dass es von den langsamen Strömungen der Stratosphäre global transportiert wird: Obwohl das meiste Ozon im Bereich des Äquators entsteht, befindet sich der überwiegende Teil des Ozons in gemäßigten und hohen Breiten, im Höhenbereich zwischen 15 und 25 Kilometern. Die Säulenhöhe, gemessen in Dobson-Einheiten (DU), beträgt in gemäßigten Breiten zwischen 300 und 400 DU, in höheren Breiten im Frühsommer teils über 500 DU, wobei 100 DU einer Stärke von 1 mm entsprechen. In den Tropen wird die Ozonschicht vom Aufstrom aus der Troposphäre auf 20 bis 30 km Höhe angehoben und auf 200 bis 300 DU ausgedünnt. Die global geringste Säulenhöhe beträgt im sogenannten Ozonloch, das sich regelmäßig im Frühjahr der Antarktis auftut, manchmal weit unter 200 DU.[1]

Prozesse

Entstehung von Ozon durch Photolyse von Luftsauerstoff

Die Photolyse eines Sauerstoffmoleküls (O2) bei Wellenlängen unter 240 nm liefert zwei Sauerstoffatome, die sich jeweils an ein weiteres Sauerstoffmolekül binden, sodass zwei Ozonmoleküle entstehen:

3 O2 → 2 O3 (Wellenlänge < 240 nm)

Ozon absorbiert langwelligeres UV-Licht, bis etwa 300 nm, wobei die Ozonmoleküle je ein Sauerstoffatom abspalten. Dieses Atom findet in den allermeisten Fällen gleich wieder Anschluss an ein Sauerstoffmolekül, sodass die Ozonmenge kaum abnimmt:

O3 + O2 → O2 + O3 (Wellenlänge < 300 nm)

In einer sauberen Stratosphäre ist der häufigste Verlustprozess die Reaktion eines Sauerstoffatoms mit einem Ozonmolekül. Dabei entstehen zwei gewöhnliche Sauerstoffmoleküle:

O + O3 → 2 O2

Dies ist der sogenannte Ozon-Sauerstoff-Zyklus, bei dem die Menge von Ozon annähernd konstant bleibt.

Beobachtbarkeit

Trotz der geringen Anzahl der Ozonmoleküle in 15 bis 30 km Höhe macht sich die Ozonschicht bei zwei atmosphärischen Phänomenen während der Dämmerung bemerkbar, die beide auf die Chappuis-Absorption zurückzuführen sind:[2]:

  • Direkt nach Sonnenuntergang bzw. vor Sonnenaufgang ist die Blaufärbung des Himmels vorwiegend auf die Absorptionswirkung des Ozons zurückzuführen und nicht – wie sonst am Taghimmel – auf die Rayleigh-Streuung. Dass die Chappuis-Absorption Ursache dieser Färbung ist, wurde erst 1952 von dem US-amerikanischen Geophysiker Edward Hulburt (1890–1982) erkannt, bekannt war diese besondere, als Blaue Stunde bekannte Färbung des Himmels bereits zuvor.
  • Kurz vor Sonnenauf- beziehungsweise nach Sonnenuntergang ist der sogenannte Erdschattenbogen sichtbar. Dabei handelt es sich um einen horizontnahen blaugrauen Streifen in Gegenposition zur Sonne. Nach einer umstrittenen Theorie sei dessen Farbe ebenfalls auf die Absorptionswirkung des Ozons zurückzuführen.

Erdgeschichte

Vor etwa 3,5 Milliarden Jahren enthielt die Erdatmosphäre noch keinen freien Sauerstoff (O2). Mit dem Auftreten der ersten oxygen-phototrophen (bei der Photosynthese O2 freisetzenden) Mikroorganismen, wahrscheinlich Cyanobakterien, begann die Freisetzung von Sauerstoff (O2) aus Wasser. Der freigesetzte Sauerstoff (O2) gelangte aber vorerst nicht in die Atmosphäre, sondern wurde bei der Oxidation der im Wasser gelösten unedlen Metall-Ionen, vor allem Fe2+, und des ebenfalls im Wasser gelösten Sulfids verbraucht. Erst als nach sehr langer Zeit diese Oxidationen abgeschlossen waren, konnte sich freier Sauerstoff in der Erdatmosphäre ansammeln. Diese Phase der Entwicklung der Erdatmosphäre wird als große Sauerstoffkatastrophe bezeichnet. Durch Konvektion und Diffusion gelangte Sauerstoff bis in die Stratosphäre, wo dann durch den Ozon-Sauerstoff-Zyklus die Ozonschicht entstand.

Ozonloch

Im Jahr 1981 beschrieb Veerabhadran Ramanathan, dass allein der sehr starke Treibhauseffekt der Fluorchlorkohlenwasserstoffe die Erdatmosphäre bis zum Jahr 2000 um ein ganzes Grad erwärmen würde, wenn die Emissionen dieses Gases nicht dramatisch reduziert werden.[3] Als Bestandteil bestimmter Gase, insbesondere Fluorchlorkohlenwasserstoffen (FCKW), gelangen Chlor und Brom in die Stratosphäre, die als Radikale katalytisch zum Abbau des Ozons beitragen. In der Polarnacht über der Antarktis kommen Wolken ins Spiel, für die es sonst in der trockenen Stratosphäre zu warm ist. Auf deren Partikeln parken die Schadstoffe und werden beim Sonnenaufgang im Frühjahr massiv frei. Im unteren Teil der Stratosphäre wird dadurch das Ozon innerhalb weniger Wochen fast vollständig abgebaut. Erst wenn der Polarwirbel instabil wird, dringen ozonreichere Luftmassen in das Ozonloch ein und schließen es, während ozonarme Luft manchmal bis Südamerika und Australien vordringt und dort zu erhöhten UV-B-Werten führt. Auswirkungen sind zu erwarten, aber schwer zu erfassen.

Die stratosphärische Ozonschicht steht nicht in Verbindung mit dem bodennah vermehrt auftretenden Ozon bei Sommersmog.

Bedeutende Wissenschaftler bei der Erforschung der Ozonschicht

  • Alfred Cornu (1841–1902) entdeckte, dass das Sonnenspektrum unterhalb 300 nm abbricht.
  • Carl Dorno (1865–1942), Begründer der Strahlungsklimatologie.
  • Gordon Dobson (1889–1976) erkannte als Erster die jahreszeitlichen Schwankungen der Dicke der Ozonschicht.
  • Hans-Karl Paetzold (1916–2002) wies 1971 auf die Gefährdung der Ozonschicht durch hochfliegende zivile Überschallflugzeuge hin.
  • Erich Regener (1881–1955) erforschte das Sauerstoff-Ozon-Gleichgewicht in der Atmosphäre.
  • Paul Crutzen (1933) wurde im Jahr 1995 – zusammen mit Mario J. Molina und Frank Sherwood Rowland – „für seine Arbeiten zur Chemie der Erdatmosphäre, insbesondere über Bildung und Abbau von Ozon“ mit dem Nobelpreis für Chemie ausgezeichnet.

Weblinks

Commons: Ozonschicht – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Antje Dethof: Assimilation of ozone data in the ECMWF model (PDF; 5,9 MB), ECMWF, 2005.
  2. Götz Hoeppe: Himmelslicht, Spiegelbild des Erdklimas, Freie Universität Berlin
  3. Spencer Weart: The Discovery of Global Warming: Other Greenhouse Gases. Center of History am American Institute of Physics, aip.org

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.