Gravitationswaage

Die Gravitationswaage ist das Messinstrument in einem physikalischen Experiment (auch Cavendish-Experiment genannt) zur Bestimmung der Gravitationskonstanten $ G $, welche die Stärke der gravitativen Anziehung zwischen Massen festlegt. Sie gibt also ein Maß für die Stärke der Gravitation an.

Cavendish-Experiment (1798)

1798 benutzte Henry Cavendish eine solche Apparatur, um zum ersten Mal die Dichte der Erde bestimmen zu können. Obwohl sich Cavendish selbst nicht für die Gravitationskonstante interessierte, gelang es durch sein Experiment, ihren Wert schon annähernd genau zu errechnen.[1]

Aufbau

Torsionskonstruktion, die von John Michell vorgeschlagen und in Experimenten angewandt wurde.

Es handelt sich um eine Drehwaage, wie sie auch in der angewandten Geophysik verwendet wird. „Drehwaage“ bedeutet, dass der Betrag des Winkels, um den ein Draht aus seiner Ruheform verdreht wird, Auskunft über das wirkende Drehmoment gibt. Hieraus lässt sich die zwischen den Testmassen wirkende Kraft berechnen.

Konkret: In der Mitte hängt ein Draht, an dem waagerecht ein Stab angebracht ist. An diesem sind in der Mitte ein Spiegel (parallel zum Draht) und zwei kleine Massen an den Enden befestigt. Davor steht eine Lichtquelle, die einen relativ schmalen Lichtstrahl (heutzutage meist ein Laser) emittiert. Dieser ist auf den Draht gerichtet und wird vom schmalen Spiegel an einen entfernten Schirm reflektiert.
Findet nun eine Auslenkung der Massen aus der Ruhelage statt, dann kann man dies durch eine Verschiebung des abgebildeten Lichtpunktes feststellen.

Experiment

Vor der Durchführung

  • Man muss die Hebellänge $ L $, Entfernung zum Schirm $ S $ und die Masse $ M $ kennen.

Durchführung:

  • Man positioniert zwei große Massen $ M $ im gleichen Abstand von Massenmittelpunkt zu Massenmittelpunkt $ r $, der möglichst senkrecht zum Stab sein sollte.
  • Die Massen $ m $ und $ M $ auf den jeweils gegenüberliegenden Seiten des Experimentes ziehen sich an und der Stab dreht sich leicht, wonach er in eine gedämpfte Drehschwingung mikroskopischen Ausmaßes verfällt. Man beobachtet, wie sich der abgebildete Lichtpunkt um einen von der Ruhelage um dem Abstand $ s_{0} $ verschiedenen Punkt einpendelt.
  • Man misst diesen Abstand (und gegebenenfalls die Schwingungsdauer).
  • Man dreht den Balken mit den schweren Massen um fast 180°. Dadurch kommen die schweren Massen auf die andere Seite der leichten Massen und der gravitationsbedingte Drehwinkel wechselt sein Vorzeichen.
  • Man wiederholt den Versuch mit anderen Massen und Abständen zur Verringerung der Messunsicherheit.

Rechnung

Die nachfolgende Berechnung gilt unter der Voraussetzung kleiner Abstände r zwischen großer und kleiner Massen. Nur dann ergibt sich aus der Gravitation zwischen diesen beiden Kugeln eine Kraft, die annähernd senkrecht zur Stange wirkt (an der die kleinen Massen aufgehängt sind). Dann ergibt sich für das Drehmoment $ \textstyle |{\vec {M}}|=|{\vec {L}}\times {\vec {F}}|\approx LF $.

Drehmoment: Die Anziehung der Massen bewirkt als Kraft ein Drehmoment $ \textstyle M_{1}=G{\frac {mM}{r^{2}}}L $ auf den Stab. Genaugenommen gibt es auch ein entgegengesetztes Moment $ \textstyle M_{2}=-M_{1}{\frac {r^{3}}{{\sqrt {r^{2}+L^{2}}}^{3}}} $, welches durch Anziehung der kleinen Kugeln durch die weiter entfernt liegenden großen Kugeln zustande kommt. Der Verdrehung durch $ \textstyle M_{\mathrm {res} }=M_{1}+M_{2} $ wirkt die Festigkeit des Drahtes entgegen, je größer der Drehwinkel θ wird, desto mehr Widerstand gibt es. Diese Gegenwirkung ist näherungsweise proportional zum Winkel $ \textstyle M_{d}=D\cdot \Theta $, den Proportionalitätsfaktor $ \textstyle D $ nennt man Direktionsmoment.

Schwingungsfrequenz: Im Gültigkeitsbereich der linearen Näherung sind Drehschwingungen harmonisch und ihre Kreisfrequenz $ \textstyle \omega _{0}={\sqrt {\frac {D}{I}}} $ ist nur abhängig vom Direktionsmoment $ \textstyle D $ und dem Trägheitsmoment $ \textstyle I $. Letzteres berechnet sich hier einfach als $ \textstyle I=2m(L/2)^{2} $. Aus $ \textstyle T={\frac {2\pi }{\omega _{0}}} $ folgt für die Schwingungsdauer $ \textstyle T=2\pi {\sqrt {\frac {I}{D}}} $. Also ist $ \textstyle D={\frac {4\pi ^{2}I}{T^{2}}} $.

Auslenkung: Wie bei allen Spiegeln ist der Drehwinkel der Abbildung doppelt so groß wie der Drehwinkel des Spiegels. Wenn man einen leicht gewölbten Schirm annimmt, ist also der Winkel, um den der Draht gedreht wurde $ \textstyle \Theta ={\frac {s_{0}}{2S}} $.

Gleichgewicht: Im Gleichgewicht zwischen Anziehung und rücktreibender Kraft muss gelten $ \textstyle M_{\mathrm {res} }=M_{d} $. Also $ \textstyle G{\frac {mM}{r^{2}}}\left(1-{\frac {r^{3}}{{\sqrt {r^{2}+L^{2}}}^{3}}}\right)L={\frac {4\pi ^{2}2m\left({\frac {L}{2}}\right)^{2}}{T^{2}}}\cdot {\frac {s_{0}}{2S}} $. Jetzt ist die Gravitationskonstante $ \textstyle G $ durch bloßes Umformen errechenbar,

$ G={\frac {\pi ^{2}Ls_{0}r^{2}}{T^{2}SM\left(1-{\frac {r^{3}}{{\sqrt {r^{2}+L^{2}}}^{3}}}\right)}} $

Ist der Abstand zum Schirm gleich der Hebellänge, $ \textstyle S=L $, so ergibt sich

$ G={\frac {\pi ^{2}r^{2}s_{0}}{MT^{2}\left(1-{\frac {r^{3}}{{\sqrt {r^{2}+L^{2}}}^{3}}}\right)}}. $

Weblinks

Commons: Cavendish experiment – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. The Cavendish Experiment (PDF; englisch).

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.