Isotop

(Weitergeleitet von Anisotopie)
Einige Isotope der Elemente Nickel (Ni), Kupfer (Cu) und Zink (Zn). Wie in den meisten Nuklidkarten sind die Elemente nach steigender Ordnungszahl von unten nach oben, die Isotope nach steigender Massenzahl von links nach rechts angeordnet. Schwarz: Stabiles, blau: beta-minus-radioaktives, rot: beta-plus-radioaktives Isotop.

Als Isotope (von {{Modul:Vorlage:lang}} Modul:ISO15924:97: attempt to index field 'wikibase' (a nil value) ísos „gleich“ und {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) tópos „Ort, Stelle“) bezeichnet man Atomarten, deren Atomkerne gleich viele Protonen, aber unterschiedlich viele Neutronen enthalten. Sie haben die gleiche Ordnungszahl, stellen daher das gleiche Element dar, weisen aber verschiedene Massenzahlen auf; es gibt also Sauerstoffisotope, Eisenisotope usw. Die verschiedenen Isotope eines Elements verhalten sich chemisch fast identisch.

Der Name kommt daher, dass die Isotope eines Elements im Periodensystem am gleichen Ort stehen. Getrennt voneinander dargestellt werden sie in einer Nuklidkarte. Die Bezeichnung Isotop ist älter als der Begriff Nuklid, der ganz allgemein „Atomart“ bedeutet. „Isotop“ wird daher nach wie vor oft auch im Sinne von Nuklid benutzt, d. h. auch dann, wenn nicht nur von Atomen eines und desselben Elements die Rede ist. Der Begriff Isotop wurde von Frederick Soddy geprägt, der für seine Arbeiten und Erkenntnisse im Bereich der Isotope und Radionuklide 1921 den Nobelpreis für Chemie erhielt.

Von jedem bekannten Element, mit Ausnahme des erst 2006 erstmals synthetisierten Oganesson, sind mehrere Isotope nachgewiesen (s. Liste der Isotope und Nuklidkarte). Insgesamt gibt es rund 3300 bekannte Nuklide. Etwa 240 davon sind stabil. Alle anderen sind instabil, das heißt, ihre Atome wandeln sich durch radioaktiven Zerfall nach mehr oder weniger langer Zeit in andere Atome um. Bei manchen traditionell als stabil angesehenen Nukliden ist diese Zeit so lang, dass ihr Zerfall erst in heutiger Zeit entdeckt wurde oder noch in Experimenten gesucht wird.

Von den 91 natürlich vorkommenden Elementen werden in der Natur 69 als Gemische mehrerer Isotope (Mischelemente) vorgefunden. Die übrigen 22 heißen Reinelemente. Das chemische Atomgewicht von Mischelementen ist der Durchschnittswert der verschiedenen Atommassen der beteiligten Isotope.

Bezeichnung und Formelschreibweise

Die Bezeichnungsweise ist in Nuklid ausführlich beschrieben. Im Text wird ein Isotop mit dem Elementnamen oder -symbol mit der angehängten Massenzahl bezeichnet, beispielsweise Sauerstoff-16 oder O-16, Eisen-56 oder Fe-56. Ausnahmen bilden manchmal die Wasserstoffisotope (siehe folgenden Abschnitt).

Als Formelzeichen wird die Massenzahl dem Elementsymbol links oben hinzugefügt. Die Kernladungszahl ist schon durch den Namen (das Elementsymbol) gegeben, kann aber zusätzlich links unten an das Elementsymbol geschrieben werden, sofern sie – z. B. bei Kernreaktionen – von Interesse ist, wie in

$ {}_{3}^{6}\mathrm {Li} +{}_{1}^{2}\mathrm {H} \rightarrow {}_{2}^{4}\mathrm {He} +{}_{2}^{4}\mathrm {He} $

Tritt in der Bezeichnung noch ein m auf (z. B. 16m1N), so ist damit ein Kernisomer gemeint. Wenn hinter dem m eine Zahl steht, ist dies eine Nummerierung, falls mehrere Isomere existieren.

Chemische Reaktionen von Isotopen

Isotope eines Elements haben die gleiche Elektronenhülle. Dadurch unterscheiden sie sich nicht in der Art der möglichen Reaktionen, sondern nur in ihrer Reaktionsgeschwindigkeit, weil diese etwas masseabhängig ist.

Der relative Massenunterschied ist bei schweren Elementen allerdings sehr gering. Das Verhältnis der Atommassen von Uran-238 und Uran-235 beträgt 1 : 1,013; in ihrem chemischen Verhalten ist kein merklicher Unterschied, zum Trennen müssen physikalische Methoden eingesetzt werden (siehe Urananreicherung). Bei den Lithiumisotopen Lithium-7 und Lithium-6 beträgt das Verhältnis 1 : 1,17; hier sind physikalisch-chemische Trennmethoden möglich (siehe Lithium). Die Massenunterschiede der drei Wasserstoffisotope sind sehr groß (1H : 2H : 3H wie 1 : 2 : 3), weshalb sie chemisch leicht unterschiedlich reagieren und sogar eigene Namen und chemische Symbole erhielten:

  • Das weitaus häufigste Wasserstoffisotop 1H wird auch als Protium oder leichter Wasserstoff bezeichnet.
  • Das Isotop 2H wird auch als Deuterium oder schwerer Wasserstoff bezeichnet. Symbol: D.
  • Das Isotop 3H wird auch als Tritium oder überschwerer Wasserstoff bezeichnet. Symbol: T.

Das unterschiedliche chemisch-physikalische Verhalten von H und D zeigt sich bei der Elektrolyse von Wasser. Wasser mit dem normalen 1H reagiert bevorzugt und wird in Wasserstoff und Sauerstoff zerlegt, während sich Wassermoleküle, die D (2H Deuterium, Schwerer Wasserstoff) enthalten, im Restwasser anreichern (gegenüber dem natürlichen Mengenverhältnis von etwa 1 : 7.000).

Mischelemente und Reinelemente

So gut wie alle auf der Erde natürlich vorkommenden Nuklide sind entweder stabil (d. h. ein Zerfall wurde nicht beobachtet) oder sind radioaktiv mit einer Halbwertszeit, die nicht wesentlich kleiner als das Erdalter ist. Diese bezeichnet man als primordiale Nuklide.

Insgesamt sind etwa 245 stabile Nuklide bekannt (siehe Nuklidkarte: stabile Nuklide sind mit schwarzem Hintergrund dargestellt). Allerdings ist bei „stabil“ zu unterscheiden, ob der Zerfall des Nuklids naturgesetzlich ausgeschlossen erscheint oder ob er möglich erscheint, aber noch nicht beobachtet wurde. Die Anzahl der im letzteren Sinn stabilen Nuklide hat sich mit der Zeit immer wieder verringert: Durch verbesserte Nachweismethoden sind einige ehemals als stabil angesehene Nuklide später als radioaktiv erkannt worden. Mit dem Nachweis der Radioaktivität von Bismut-209 im Jahr 2003 ergab sich, dass Blei-208 das schwerste stabile Nuklid und somit Blei das schwerste Element mit stabilen Isotopen ist.[1]

In der Natur vorkommende Elemente sind meistens Mischelemente, d. h. Isotopengemische. Die meisten natürlichen Isotope hat Zinn mit 10 Isotopen, gefolgt von Xenon mit 9 natürlichen Isotopen, von denen 8 stabil sind. Elemente, die dagegen nur aus einem natürlichen Isotop bestehen, nennt man Reinelement. Ein Reinelement hat also genau ein primordiales Isotop. Diese Eigenschaft haben 19 stabile und 3 langlebige instabile Elemente.

Bekannte Isotope

Wasserstoff

Wasserstoff ist das Element mit dem stärksten chemischen Isotopeneffekt. Schwerer Wasserstoff (2H oder Deuterium) dient im Schwerwasserreaktor als Moderator. Überschwerer Wasserstoff (3H oder Tritium) ist radioaktiv. Er entsteht in der Atmosphäre durch die kosmische Strahlung sowie in Kernreaktoren. Tritium wurde zwischen etwa 1960 und 1998 in Leuchtfarben für Uhr-Zifferblätter usw. verwendet. In größeren Mengen sollen Deuterium und Tritium in Zukunft als Brennstoff für Kernfusionsreaktoren gebraucht werden.

Helium

Helium ist das Element mit dem stärksten physikalischen Isotopeneffekt. Insbesondere im Tieftemperaturbereich verhalten sich die beiden Heliumisotope sehr verschieden, da 3He ein Fermion und 4He ein Boson ist.

Kohlenstoff

Ein bekanntes Isotop ist das radioaktive 14C, das zur Altersbestimmung von organischen Materialien (Archäologie) benutzt wird (Radiokohlenstoffmethode). Natürlicher Kohlenstoff liegt hauptsächlich in den stabilen Isotopen 12C und 13C vor. 14C entsteht in hohen atmosphärischen Schichten aus Stickstoff.

Sauerstoff

Das Verhältnis der beiden stabilen Sauerstoffisotope 18O und 16O wird zur Untersuchung von Paläo-Temperaturen herangezogen. Die stabilen Sauerstoffisotope eignen sich auch als natürliche Tracer in aquatischen Systemen.[2]

Uran

Das Isotop 235U dient als Brennstoff in Kernkraftwerken. Für die meisten Reaktortypen muss das Natururan dazu an 235U angereichert werden. Fast reines 235U wird in manchen Kernwaffen verwendet.

Isotope in der Analytik

In Messungen des optischen Spektrums mit genügender Auflösung können Isotope eines Elements an ihren Spektrallinien unterschieden werden (Isotopieverschiebung).

Die Isotopenzusammensetzung in einer Probe wird in der Regel mit einem Massenspektrometer bestimmt, im Fall von Spurenisotopen mittels Beschleuniger-Massenspektrometrie.

Radioaktive Isotope können oft anhand ihrer Zerfallsprodukte oder der abgegebenen ionisierenden Strahlung identifiziert werden.

Isotope spielen ferner eine Rolle in der NMR-Spektroskopie. So hat beispielsweise das gewöhnliche Kohlenstoff-Isotop 12C kein magnetisches Moment und ist daher nicht beobachtbar. Untersuchungen am Kohlenstoff können daher nur mithilfe des wesentlich selteneren 13C-Isotops erfolgen.

Isotope werden auch in der Aufklärung von Reaktionsmechanismen oder Metabolismen mit Hilfe der sogenannten Isotopenmarkierung verwendet.

Die Isotopenzusammensetzung des Wassers ist an verschiedenen Orten der Welt verschieden und charakteristisch. Diese Unterschiede erlauben es etwa bei Lebensmitteln wie Wein oder Käse, die Deklaration des Ursprungsortes zu überprüfen.

Die Untersuchung von bestimmten Isotopen-Mustern (insbesondere 13C-Isotopen-Mustern) in organischen Molekülen wird als Isotopomeren-Analyse bezeichnet. Sie erlaubt unter anderem die Bestimmung intrazellulärer Stoffflüsse in lebenden Zellen. Darüber hinaus ist die Analyse von 13C/12C-, 15N/14N- sowie 34S/32S-Verhältnissen in der Ökologie heute weit verbreitet. Anhand der Fraktionierung lassen sich Stoffflüsse in Nahrungsnetzen nachverfolgen oder die Trophieniveaus einzelner Arten bestimmen. Auch in der Medizin dienen stabile Isotope als natürliche Tracer.

In der Hydrologie werden aus den Konzentrationsverhältnissen von Isotopen Rückschlüsse auf hydrologische Prozesse gezogen. Der Wasserkreislauf begleitet die meisten Stoffflüsse ober- und unterhalb der Erdoberfläche. Das Vienna Standard Mean Ocean Water (VSMOV) dient oft als Referenz.

Die Geochemie befasst sich mit Isotopen in Mineralen, Gesteinen, Boden, Wasser und Erdatmosphäre.

Siehe auch

Literatur

  • Werner Stolz: Radioaktivität. Grundlagen, Messung, Anwendungen. 5. Auflage. Teubner, Wiesbaden 2005, ISBN 3-519-53022-8.
  • Bogdan Povh, K. Rith, C. Scholz, F. Zetsche: Teilchen und Kerne. Eine Einführung in die physikalischen Konzepte. 7. Auflage. Springer, Berlin/Heidelberg 2006, ISBN 978-3-540-36685-0.
  • Klaus Bethge, Gertrud Walter, Bernhard Wiedemann: Kernphysik. 2. Auflage. Springer, Berlin/Heidelberg 2001, ISBN 3-540-41444-4.
  • Hanno Krieger: Grundlagen der Strahlungsphysik und des Strahlenschutzes. 2. Auflage. Teubner, Wiesbaden 2007, ISBN 978-3-8351-0199-9.

Weblinks

Wiktionary: Isotop – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Pierre de Marcillac, Noël Coron, Gérard Dambier, Jacques Leblanc, Jean-Pierre Moalic: Experimental detection of α-particles from the radioactive decay of natural bismuth. In: Nature. Band 422, Nr. 6934, April 2003, S. 876–878, Ergebnistabelle 1, doi:10.1038/nature01541.
  2. Paul Königer: Tracerhydrologische Ansätze zur Bestimmung der Grundwasserneubildung. Inst. für Hydrologie, Freiburg i. Br. 2003, DNB 969622139 (PDF – zugl. Dissertation, Universität Freiburg).

News mit dem Thema Isotop

02.02.2023
Atomphysik | Geophysik
Sauerstoff in der Hochatmosphäre der Erde
In einer Untersuchung der Zusammensetzung der oberen Atmosphäre der Erde wurde ein erhöhtes Vorkommen von 18O nachgewiesen – einem schwereren Isotop mit 10 anstelle von acht Neutronen wie bei 16O.
20.10.2022
Kometen und Asteroiden | Atomphysik
Ryugu kam vom Rand des Sonnensystems
Eisenisotope in Proben vom Asteroiden Ryugu deuten auf einen Entstehungsort jenseits der Umlaufbahnen von Jupiter und Saturn hin.
15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
02.11.2021
Monde | Kometen und Asteroiden
Planetologen erforschen schweres Bombardement des Mondes vor 3,9 Milliarden Jahren
Der Mond war vor 3,9 Milliarden Jahren einem schweren Bombardement mit Asteroiden ausgesetzt.
23.09.2021
Teilchenphysik
Den Geheimnissen eines exotischen Kerns auf der Spur
Berechnungen des exotischen, experimentell schwer zugänglichen Kerns Zinn-100 mit neuesten ab-initio theoretischen Methoden liefern verlässliche Ergebnisse.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
25.01.2021
Elektrodynamik | Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen?
21.01.2021
Sonnensysteme | Planeten
Die Entstehung des Sonnensystems in zwei Schritten
Warum herrschen auf den einen Planeten des Sonnensystems erdähnliche Verhältnisse, auf den anderen nicht?
09.06.2020
Kernphysik
Isotopenmessungen an Luftfiltern belegen zivilen Hintergrund eines nicht-deklarierten nuklearen Unfalls
Studie der Leibniz Universität Hannover und der Westfälischen Wilhelms-Universität untersucht radioaktive Wolke.
09.06.2020
Teilchenphysik
Vom Rugbyball zum Frisbee - Forschungsteam entwickelt neuen Blick auf magisches Zinn
Ein internationales Forschungsprojekt unter Beteiligung von Forschern der TU Darmstadt, des MPIK Heidelberg, der FAU Erlangen-Nürnberg und der JGU Mainz hat in hochpräzisen Messungen in der langen Isotopenkette der magischen Zinnisotope Abweichungen der Kernform von der Kugelgestalt bestimmt.
28.02.2020
Planeten | Kometen und Asteroiden
Alte Meteoritenstätte gibt neue Hinweise auf die Vergangenheit des Mars
Die Marsatmosphäre – und die Frage, ob dort einst Leben möglich war – treibt die Wissenschaft schon seit langem an.
20.08.2019
Sonnensysteme | Geophysik
Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems
Bei gewaltigen Sternenexplosionen entsteht das seltene Isotop Eisen-60.
21.05.2019
Kernphysik | Geschichte der Physik
Ur-Kilogramm abgelöst - Neues Internationales Einheitensystem (SI) am 20.5.2019 in Kraft getreten
Neben Ampere, Kelvin, Mol und Co.
13.05.2019
Atomphysik | Kernphysik
Größe von Bor-Isotopen bestimmt - Forschung zwischen Kern- und Atomphysik
Arbeitsgruppe des Konstanzer Physikers Prof.
12.02.2019
Atomphysik | Kernphysik
Rätselhafte Größe extrem leichter Calciumisotope
Ein internationales Forschungsprojekt unter Beteiligung von Kernphysikern und Kernphysikerinnen der TU Darmstadt hat erstmals in hochpräzisen Messungen die Radien extrem leichter Calciumisotope bestimmt und davon ausgehend die Theorie zur Beschreibung von Isotopenradien deutlich verbessern können.
30.07.2018
Astrophysik | Teilchenphysik
26AlF – die erste Entdeckung eines radioaktiven Moleküls im Weltraum
Der erste eindeutige Nachweis eines radioaktiven Moleküls, 26AlF, im Weltraum, ist in der direkten Umgebung des historischen Nova-ähnlichen Objekts CK Vul gelungen, bei dem es sich höchstwahrscheinlich um den Überrest der Kollision zweier Sterne handelt.
27.06.2018
Kernphysik | Quantenoptik
Nobelium im Laserlicht
Die Größe und Form künstlich hergestellter Atomkerne mit mehr als 100 Protonen war experimentell bisher nicht direkt zugänglich.
07.06.2018
Teilchenphysik
Neue Wege in die „Terra incognita“ der Nuklidkarte
Hochpräzise Massenmessungen an neutronenreichen Chromisotopen: Ein wichtiger Schritt zur Erforschung bisher unbekannter Atomkerne ist Physikern des MPI für Kernphysik und der Universität Greifswald in einer internationalen Kollaboration am CERN gelungen.
30.06.2017
Kometen_und_Asteroiden | Planeten
Zusammenhang zwischen Kometen und Erdatmosphäre aufgedeckt
Die schwierige, aber erfolgreiche Messung mehrerer Isotopen des Edelgases Xenon beim Kometen 67P/Churyumov-Gerasimenko durch das Berner Messinstrument ROSINA auf der Rosetta-Sonde zeigt, dass durch Einschläge von Kometen Material auf die Erde gelangte.
12.02.2016
Monde | Planeten
Extremer Frontalaufprall auf der Erde
Neue, in „Science“ veröffentlichte Isotopenanalysen sprechen für die These, dass vor rund 4,5 Milliarden Jahren ein planetenartiger Himmelskörper tief in die Erde eingedrungen und eine Materialmischung erzeugt hat, aus der auch der Mond entstanden ist.
07.02.2015
Astrophysik | Teilchenphysik
Zeit im Universum messen
Bedeutende astrophysikalische Ereignisse in unserer Milchstraße können mithilfe radioaktiver Isotope zeitlich zugeordnet werden.
21.01.2015
Galaxien | Supernovae
Interstellarer Staub gibt Aufschluss zur Entstehung chemischer Elemente
Isotopenforschung der Universität Wien liefert wichtigen Beitrag für internationale Forschungskooperation.

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.