Womit werden wir morgen kühlen - Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Physik-News vom 16.09.2019


Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden als für das Heizen. Die Durchdringung unseres Alltags mit Kühlanwendungen hat einen stetig wachsenden ökologischen Fußabdruck zur Folge. Neue Verfahren wie die magnetische Kühlung könnten diese Belastung minimieren. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der TU Darmstadt haben die dafür in Frage kommenden Materialien auf ihre Eignung untersucht. Ergebnis ist eine erste systematische Materialbibliothek mit wichtigen Kenngrößen, die sie in der Fachzeitschrift Advanced Energy Materials veröffentlicht haben.

Die Erzeugung künstlicher Kälte mittels konventioneller Gaskompression steht seit rund hundert Jahren für Haushaltsanwendungen zur Verfügung. Die Technologie hat sich in dieser Zeit jedoch kaum verändert. Nach Schätzungen von Experten sind heute circa eine Milliarde darauf basierender Kühlschränke weltweit im Einsatz, Tendenz zunehmend. „Die Kühltechnik gilt mittlerweile als größter Stromverbraucher in den eigenen vier Wänden. Ebenso problematisch ist die Umweltbelastung, die die eingesetzten Kühlmittel mit sich bringen“, beschreibt Dr. Tino Gottschall seine Motivation. Er forscht am Hochfeld-Magnetlabor Dresden des HZDR an Materialien für magnetische Kühlprozesse.


Der magnetokalorische Effekt: In ein Magnetfeld gebracht, ändert sich die Temperatur bestimmter Materialien deutlich. Diesen Effekt wollen Forscher nutzen, um umweltfreundlichere Kühlgeräte zu bauen.

Publikation:


T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch
Making a cool choice: the materials library of magnetic refrigeration
Advanced Energy Materials, 2019

DOI: 10.1002/aenm.201901322



Zum Herzstück künftiger Kühltechnologien könnte der „magnetokalorische Effekt“ werden: Bestimmte Metalle und Legierungen ändern schlagartig ihre Temperatur, wenn sie einem Magnetfeld ausgesetzt werden. Aus der Forschung ist bereits eine ganze Reihe solcher magnetokalorischer Substanzen bekannt. „Ob sie sich auch für massenhaft verbreitete Haushaltsanwendungen empfehlen, ist jedoch eine andere Frage“, fügt Prof. Oliver Gutfleisch vom Institut für Materialwissenschaften der TU Darmstadt hinzu.

Stoffdatenbank für Kühlmaterialien

Zu ihrer Klärung trugen die Wissenschaftler Daten zu Stoffeigenschaften zusammen. Jedoch stießen sie dabei schnell auf Schwierigkeiten. „Besonders überrascht waren wir, dass überhaupt nur wenige Ergebnisse aus direkten Messungen in der Fachliteratur zu finden sind“, berichtet Tino Gottschall. „Meistens wurden diese Kenngrößen lediglich indirekt aus der beobachteten Magnetisierung berechnet. Wir stellten dabei fest, dass die Messbedingungen wie die Stärke und das Profil des angelegten Magnetfelds bis hin zum Messregime nicht miteinander vergleichbar sind – und damit auch nicht die erzielten Ergebnisse.“

Um diese Unstimmigkeiten bei den bisher publizierten Stoffparametern auszuräumen, legten die Forscher ein aufwändiges Messprogramm auf, das die ganze Bandbreite der derzeitig aussichtsreichsten magnetokalorischen Werkstoffe und deren relevante Materialeigenschaften abdeckt. Durch die Kopplung von hochgenauen Messungen und thermodynamischen Betrachtungen konnten die Wissenschaftler aus Dresden und Darmstadt in sich konsistente Stoffdatensätze generieren. Sie präsentieren mit ihrer Arbeit nun einen soliden Grundstock an Daten, der die Auswahl zweckmäßiger Materialien für unterschiedliche Anwendungen zur magnetischen Kühlung erleichtern kann.

Welches Material kann es mit Gadolinium aufnehmen?

Die Eignung eines Materials für die magnetische Kühlung wird letztendlich durch verschiedene Kenngrößen bestimmt. Nur bei einer passenden Kombination dieser Parameter kann das Material mit der bewährten Haushaltskühltechnik konkurrieren. „Die erzielte Temperaturänderung bei Raumtemperatur sollte groß sein und sich gleichzeitig möglichst viel Wärme abführen lassen“, benennt Gottschall die hervorstechendsten Eigenschaften der gesuchten Kühlmaterialien von morgen.

Für einen Einsatz in zukünftigen Massenanwendungen dürfen die Substanzen außerdem keine schädlichen Eigenschaften für Umwelt und Gesundheit mitbringen. „Sie sollten zudem nicht aus Rohstoffen bestehen, die aufgrund ihrer begrenzten Vorkommen und schweren Ersetzbarkeit in Anwendungen als kritisch eingestuft werden“, ergänzt Gutfleisch. „Dieser Gesichtspunkt kommt bei der Gesamtbewertung technologischer Prozesse oftmals noch zu kurz. Eine Fokussierung auf physikalische Parameter reicht heute nicht mehr aus. Insofern ist die magnetische Kühlung auch ein Paradebeispiel für die grundlegende Herausforderung der Energiewende, die ohne einen nachhaltigen Zugriff auf geeignete Materialien nicht umsetzbar sein wird.“

Bei Raumtemperatur heißt der magnetokalorische Maßstab noch Gadolinium. Wird das Seltenerd-Element in ein Magnetfeld von 1 Tesla gebracht, können die Wissenschaftler eine Temperaturänderung von fast 3 Grad Celsius messen. Die Stärke des für diesen Effekt anzulegenden Magnetfelds entspricht der von leistungsfähigen kommerziellen Dauermagneten, wie sie aus wirtschaftlichen Gründen auch in den neuen magnetokalorischen Kühlschränken zum Einsatz kommen sollen.

Geeignete Materialien: Ein Blick in die Zukunft

Trotz der herausragenden Eigenschaften gelten die Aussichten auf eine Verwendung von Gadolinium zu Kühlzwecken im Haushalt als nicht realistisch. Denn das Element zählt zu jenen Seltenerd-Metallen, die langfristig als zu unsicher in der Beschaffung eingestuft werden. Bei gleicher Bauweise könnten Wärmeüberträger aus Eisen-Rhodium-Legierungen die größten Wärmemengen je Kühlzyklus abführen. Doch das Platingruppenmetall Rhodium gehört hinsichtlich der Versorgungssicherheit ebenfalls zu den von der Europäischen Kommission als kritisch eingestuften Rohstoffen.

Doch die Forscher fanden auch Kandidaten, deren Komponenten auf absehbare Zeit problemlos verfügbar und die gleichzeitig vielversprechend leistungsfähig sind: Intermetallische Verbindungen aus den Elementen Lanthan, Eisen, Mangan und Silizium etwa, bei denen Wasserstoff im Kristallgitter eingelagert wurde, können Gadolinium hinsichtlich der dem Kühlraum entziehbaren Wärme sogar übertreffen.

Weitere könnten schon bald folgen: Die Forscher vom HZDR und der TU Darmstadt arbeiten intensiv am Ausbau der Materialpalette für die magnetische Kühlung. In enger Zusammenarbeit bereiten Wissenschaftler beider Einrichtungen neue Versuchsreihen zu den Eigenschaften magnetokalorischer Substanzen vor. Am Hochfeld-Magnetlabor Dresden wollen sie beispielsweise untersuchen, wie sich diese Substanzen in gepulsten Magnetfeldern verhalten. Der breitere Fokus der zukünftigen Forschung liegt auf dem Verhalten der Materialien, wenn sie gleichzeitig verschiedenen Einflüssen wie Magnetfeldern, mechanischem Stress sowie Temperaturänderungen ausgesetzt sind. Parallel dazu arbeiten die Forscher an Demonstratoren, die die Effizienz der Magnetkühlung unter Beweis stellen sollen.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

27.03.2019
Festkörperphysik | Quantenphysik

Bloß kleine Wellen schlagen: Forscherteam erzeugt ultrakurze Spinwellen in einem einfachen Material
Die Spintronik gilt als vielversprechendes Konzept für die Elektronik der Zukunft.
22.06.2021
Festkörperphysik | Teilchenphysik

Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik?
09.05.2018
Festkörperphysik | Thermodynamik

Vorsicht, Glatteis!
Gleiten auf Eis oder Schnee ist viel einfacher als das Gleiten auf den meisten anderen Oberflächen, dies ist allgemein bekannt. Aber warum ist die Eisoberfläche rutschig?
04.10.2018
Festkörperphysik

Molekulare Multiwerkzeuge
Die Funktionalisierung von Oberflächen mit verschiedenen physikalischen oder chemischen Eigenschaften ist eine Anforderung in vielen Anwendungsgebieten.
18.02.2019
Festkörperphysik | Quantenphysik

Supraleitung: Warum muss es so kalt sein
Bis heute gibt es keine exakte Rechenmethode, um supraleitende Materialien zu beschreiben.
18.12.2018
Festkörperphysik

Reversible Brennstoffzelle bricht Wirkungsgrad-Rekord
Wissenschaftler des Forschungszentrums Jülich haben ein hochgradig effizientes Brennstoffzellen-System in Betrieb genommen, das einen elektrischen Wirkungsgrad im Wasserstoffbetrieb von über 60 Prozent erzielt.
29.05.2018
Festkörperphysik | Quantenphysik | Quantenoptik | Teilchenphysik

Ultradünner Supraleiter ebnet Weg zu neuen quantenelektronischen Instrumenten
Forschern des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) ist es gemeinsam mit Kollegen aus Karlsruhe, London und Moskau gelungen, erstmals einen kohärenten Quanteneffekt mit einem bei tiefen Temperaturen kontinuierlich supraleitenden Nanodraht experimentell nachzuweisen und damit einen neuen Quantendetektor zu realisieren.
04.11.2020
Festkörperphysik | Teilchenphysik

Neue Einblicke in die Entstehung und den Zerfall atomarer Cluster
Atomare Cluster sind Ansammlungen von wenigen Atomen des gleichen Elementes oder auch von Atomen weniger unterschiedlicher Elemente. Unter welchen Bedingungen bilden sich atomare Cluster?
28.11.2019
Festkörperphysik

Der Nachbar schwingt mit
Arbeitsgruppe der Universität Konstanz gelingt direkte Kopplung zweier nahe beieinanderstehender Sensoren im Nanobereich.
09.07.2019
Festkörperphysik

Nano-Papier zum Sprühen
Mit einem neuen Sprühverfahren lassen sich sehr gleichmäßige Schichten aus Zellulose-Nanofasern (CNF) im industriellen Maßstab produzieren.
07.11.2022
Festkörperphysik

Nano-Bauteile clever voneinander gelöst
Physiker finden eine Lösung für das steuerbare Trennen von verklebten Nano-Bauteilen.
10.07.2018
Festkörperphysik

Der perfekte Terahertz-Strahl – mit dem 3D-Drucker
An der TU Wien ist es gelungen, Terahertz-Strahlen nach Belieben zu formen.
25.07.2018
Festkörperphysik

Extreme Zustände in Halbleitern
Physikern der Universitäten Konstanz, Paderborn und der ETH Zürich gelingt experimenteller Nachweis der Wannier-Stark-Lokalisierung.
16.07.2018
Elektrodynamik | Festkörperphysik

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen
„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin.
05.09.2019
Festkörperphysik | Quantenphysik

Garchinger Physiker fotografieren magnetische Polaronen
Garchinger Physikern gelang es erstmals, die magnetische Struktur um mobile Störstellen in einem Kristallgitter, sogenannte magnetische Polaronen, mithilfe eines Quantensimulators abzulichten.
20.11.2019
Atomphysik | Festkörperphysik

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern
Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist.
03.05.2018
Astrophysik | Festkörperphysik

Zwergdünen schreiben Klimageschichte
Bläst der Wind Sandkörner durch die Wüste, entstehen zentimeterkleine Rippel und gewaltige Dünen.
08.01.2021
Festkörperphysik | Teilchenphysik

Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das?
22.09.2022
Festkörperphysik | Thermodynamik

Molekülschwingungen schärfer denn je messbar!
Mit Rastertunnelmikroskopen lassen sich zwar einzelne Moleküle abbilden, ihre Schwingungen waren damit bisher aber nur schwer detektierbar.
29.04.2019
Atomphysik | Festkörperphysik

Entkoppeltes Graphen dank Kaliumbromid
Bei der Herstellung von Graphen auf einer Kupferoberfläche kann Kaliumbromid zu besseren Resultaten führen.
06.10.2021
Elektrodynamik | Festkörperphysik

Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
04.10.2019
Festkörperphysik | Quantenoptik

Wie schnell Elektronenspins tanzen: Chemiker untersuchen Wechselwirkung von Metallverbindungen und Licht
Metallverbindungen zeigen ein faszinierendes Verhalten in ihrer Wechselwirkung mit Licht, was zum Beispiel in Leuchtdioden, Solarzellen, Quantencomputern und sogar in der Krebstherapie angewendet wird.
30.01.2020
Festkörperphysik | Quantenphysik

Ein Quantum Festkörper
Forscher in Österreich bringen mithilfe eines Lasers ein Nanoteilchen aus Glas zum Schweben und kühlen es erstmals bis in das Quantenregime.
22.11.2022
Festkörperphysik | Physikdidaktik

Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
29.01.2019
Festkörperphysik

Forscher der TUDresden entschlüsseln elektrische Leitfähigkeit von dotierten organischen Halbleiter
Wissenschaftler des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) an der TU Dresden haben in Kooperation mit der Stanford University (USA) und dem Institute for Molecular Science in Okazaki (Japan) wesentliche Parameter identifiziert, die die elektrische Leitfähigkeit in dotierten organischen Leitern beeinflussen.
22.04.2020
Elektrodynamik | Festkörperphysik | Quantenphysik

Studie zum Quantenphasen-Übergang im Josephson-Kontakt
Ein deutsch-französisches Forscherteam hat den Stromfluss von Cooper-Elektronenpaaren in Josephson-Kontakten untersucht.
15.04.2020
Festkörperphysik | Quantenphysik

Quantenphysik – oberflächlich betrachtet
Regensburger Physiker untersuchen nanometergroße konische Drähte, basierend auf neuartigen Materialien – und entdecken dabei eine Reihe interessanter Leitfähigkeitsphänomene an deren Oberflächen.
09.05.2019
Elektrodynamik | Festkörperphysik

Marcus-Regime in organischen Bauelementen: Ladungstransfer-Mechanismus an Kontakten aufgeklärt
Physiker des Exzellenzclusters Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Spanien, Belgien und Deutschland in einer Studie zeigen, wie sich Elektronen bei ihrer Injektion in organische Halbleiterfilme verhalten.
03.09.2018
Festkörperphysik

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen
Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel.
30.06.2017
Festkörperphysik

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
Großes Potenzial für Anwendungen in der gezielten Pharmakotherapie und zur Herstellung maßgeschneiderter Nanoteilchen.
08.08.2018
Festkörperphysik | Thermodynamik

Eis unter Hochdruck: Bayreuther Forscher beobachten erstmals den Strukturwandel von Eiskristallen
Eiswürfel im Kühlschrank oder Eiszapfen an der Dachrinne sind vertraute Alltagsbeispiele für gefrorenes Wasser.
15.01.2019
Festkörperphysik | Plasmaphysik

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern
Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt.
04.03.2020
Festkörperphysik

Neuronale Hardware für Bilderkennung in Nanosekunden
Ein ultraschneller Bildsensor mit eingebautem neuronalen Netzwerk wurde an der TU Wien entwickelt.
01.05.2020
Festkörperphysik | Quantenphysik

Der richtige Abstand für eine ideale Beziehung
Regensburger Physiker maßschneidern die Bindung von Elektron-Loch-Paaren in atomar dünnen Kristallen und erleichtern damit die Suche nach neuen Quantenmaterialien.
08.07.2021
Festkörperphysik | Quantenphysik

Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
03.04.2020
Elektrodynamik | Festkörperphysik

Den Regen für Hydrovoltaik nutzen
Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen.
09.02.2021
Festkörperphysik

Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen.
30.07.2018
Festkörperphysik

Einzelne Silber-Nanopartikel in Echtzeit beobachtet
Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, um in Echtzeit die chemischen Reaktionen von einzelnen Silber-Nanopartikeln zu beobachten, die gerade einmal ein Tausendstel der Dicke eines menschlichen Haares messen.
15.07.2019
Teilchenphysik | Festkörperphysik

Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet
Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten.
18.10.2022
Raumfahrt | Festkörperphysik

Funktionieren Kleber im Weltraum?
Allgemeiner gefragt: Ändern sich die Eigenschaften von Materialien, wenn sie sich in Schwerelosigkeit aus flüssigen Vorstufen bilden?
08.08.2018
Festkörperphysik | Optik

Weltrekord: Schnellste 3D-Tomographien an BESSY II
Ein HZB-Team hat an der EDDI-Beamline an BESSY II einen raffinierten Präzisions-Drehtisch entwickelt und mit einer besonderen, schnellen Optik kombiniert.
15.02.2021
Festkörperphysik | Teilchenphysik

Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
18.10.2018
Festkörperphysik

Nanokäfige im Labor und im Computer
Nanokäfige sind hochinteressante molekulare Strukturen mit Hohlräumen, die z.
30.03.2020
Festkörperphysik

Stabile Blasen und ein Wasserläufer bewahren Stahl vor Erosion
Physiker der Universität Magdeburg entwickeln neues Verfahren zum Schutz von Schiffspropellern und Turbinen.
09.06.2020
Festkörperphysik

Atome streicheln für Fortgeschrittene
Wie kann man Oberflächen möglichst sanft und zerstörungsfrei auf atomarer Skala abbilden?
30.06.2017
Festkörperphysik

TU Ilmenau und Physikalisch-Technische Bundesanstalt entwickeln neue Waage für das neue Kilogramm
Wenn nächstes Jahr, 2018, das Kilogramm neu definiert wird, werden die Technische Universität Ilmenau und die Physikalisch-Technische Bundesanstalt die Waage entwickelt haben, die nötig ist, um es zu messen: die Planck-Waage.
27.04.2020
Festkörperphysik

Untersuchung der Entstehung von „metallischem Glas“ widerlegt jahrzehntealtes Paradigma der Glasforschung
Metallische Gläser sind Legierungen, die bei schnellem Abkühlen nicht kristallisieren.
16.12.2019
Elektrodynamik | Festkörperphysik

Metall mit ungewöhnlichen Eigenschaften
Eine chinesisch-deutsche Forschungskooperation mit Beteiligung der Universität Augsburg hat bei einem Metall Eigenschaften nachgewiesen, die sich mit gängigen physikalischen Theorien nicht erklären lassen.
26.04.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Terahertz-Spektroskopie vertieft Einblick in Halbleiter
Billiardstoß oder Auffahrunfall?
26.06.2019
Elektrodynamik | Plasmaphysik | Festkörperphysik

Ein Blitz unter Wasser
Elektrochemische Zellen helfen unter anderem dabei, CO2 zu recyceln.