Untersucht: Bodenproben des Asteroiden Ryugu

Physik-News vom 25.09.2022


Ein internationales Forschungsteam hat Bodenproben untersucht, die die japanische Raumsonde Hayabusa-2 auf dem Asteroiden Ryugu einsammelte. Die Gruppe hat aus der Analyse des außerirdischen Materials Erkenntnisse über die Entstehung des Asteroiden und die einzigartigen Prozesse gewonnen, die sich in den ersten fünf Millionen Jahren nach der Geburt unseres Sonnensystems abspielten.

Prof. Langenhorst hatte schon Staub des Asteroiden Itokawa, Materie von Marsmeteoriten und interstellaren Staub, den die NASA-Sonde „Stardust“ im Weltall einsammelte, unter seinem Mikroskop. Seine Expertise als Meteoritenforscher machte ihn zuletzt zum Mitglied eines ausgesuchten internationalen Forschungsteams bei der Mission der Weltraumsonde „Hayabusa-2“ zum Asteroiden Ryugu. Unterm Transmissions-Elektronen-Mikroskop untersuchte der Jenaer Forscher in den Bruchstücken vom steinernen Kleinplaneten Minerale, die in astronomischen Dimensionen sehr konkrete Aussagen zur „Geburtsstunde“ des Asteroiden zulassen. Was dabei wann und wo in unserem Sonnensystem passierte, davon berichtet das „Stone“-Team jetzt erstmals in einem Artikel in „Science“.


Modell des Asteroiden (162173) Ryugu. Ryugu ist ein erdnahes Objekt und ein potenziell gefährlicher Asteroid der Apollo-Gruppe. Er misst etwa 900 Meter im Durchmesser und ist ein dunkles Objekt des seltenen Spektraltyps Cb. Im Juni 2018 erreichte die japanische Raumsonde Hayabusa2 den Asteroiden, den sie nach Messungen und Probenahmen im November 2019 in Richtung Erde wieder verließ. Die Kapsel mit den Proben kam am 5. Dezember 2020 zur Erde zurück.

Publikation:


T. Nakamura, M. Matsumoto, K. Amano et al.
Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from return samples
Science (2022)

DOI: 10.1126/science.abn8671



Asteroiden enthalten wichtige Informationen über den Beginn unseres Sonnensystems

Sie sind manchmal nur etwas größer als ein Auto, manchmal aber auch sind es Gesteinsbrocken von einem und mehr Kilometern Durchmesser, die auf festen Bahnen die Sonne umkreisen. Die Rede ist von Asteroiden oder Planetoiden, von denen Millionen in unserem Sonnensystem ihre Bahnen ziehen. 90 Prozent davon sind im sogenannten Asteroidengürtel zwischen den Planeten Jupiter und Mars unterwegs, einige jedoch kommen der Sonne und damit auch der Erde viel näher. Zu den sogenannten erdnahen Asteroiden gehört auch „Ryugu“ (genauer (162173) Ryugu), ein Gesteinsbrocken von rund einem Kilometer Durchmesser, der einem auf einer Ecke stehenden Pflasterstein ähnelt. Für seinen Flug um die Sonne in einer Entfernung von 0,96 bis 1,42 Astronomischen Einheiten braucht er 474,5 Tage und kreuzt dabei auch die Erdumlaufbahn. Das macht ihn zu einem besonders interessanten Forschungsobjekt für die Astrowissenschaft.



Der Professor für Analytische Mineralogie der Mikro- und Nanostrukturen an der Universität Jena ist seit langem damit beschäftigt, Materie aus dem Weltall bis ins kleinste Detail zu analysieren, um die Prozesse bei der Entstehung und Formierung unseres Sonnensystems aufklären zu helfen.


In Scheiben geschnittene Proben von Staubkörnern in einem Behälter am Institut für Geowissenschaften der Friedrich-Schiller-Universität Jena.
Prof. Dr. Falko Langenhorst an einem hochmodernen Transmissionselektronenmikroskop am Institut für Geowissenschaften der Friedrich-Schiller-Universität Jena.

Jenaer Expertise für Meteoriten und Asteroiden

Er war schon 2006 an der „Sternenstaub“- (Stardust)-Mission der NASA zu einem Kometen beteiligt. Langenhorsts Expertise als Astro-Mineraloge war auch gefragt bei der 2003 gestarteten ersten Mission einer japanischen Raumsonde zum Asteroiden Itokawa. Die Sonde wurde nach dem scharfsichtigen Wanderfalken „Hayabusa“ benannt. Der Jenaer gehörte zu dem internationalen Team, das den extraterrestrischen Staub von der Itokawa-Oberfläche untersuchte, den die Sonde 2010 zur Erde gebracht hatte. „Material in der Hand zu halten, das von einem Himmelskörper stammt, der seit Jahrmillionen seine Bahn im Weltall zieht, ist schon faszinierend“, gesteht Langenhorst. Diesen Staubkörnern ihr Geheimnis zu entlocken, treibe ihn immer wieder aufs Neue an.

Seine Mitwirkung im Forschungsteam der Hayabusa-2-Mission wurde nun wieder von den japanischen Kollegen angefragt. 2014 bestimmte die Japan Aerospace Exploration Agency (JAXA) den Asteroiden Ryugu als Ziel ihrer Hayabusa-2-Mission. Die Raumsonde erreichte nach mehrjährigem Flug den Kleinplaneten Ryugu und schickte 2018 nicht nur erstaunliche Fotos von dem Himmelskörper zur Erde, sondern brachte zwei Jahre später auch Gesteinsmaterial von dort mit zurück. „Während Hayabusa 1 aufgewirbelten Staub eingesammelt hatte, dessen größtes Korn etwa 0,3 Millimeter klein war, brachte die Sonde diesmal zahlreiche, mehrere Millimeter große Bruchstücke von Ryugu zur Erde“, erklärt Langenhorst. Seine Aufgabe war es, die Minerale in den Gesteinsbruchstücken von Ryugu zu identifizieren und die Verteilung der chemischen Elemente darin zu analysieren.

Asteroid Ryugu ist kein kompakter Felsbrocken, sondern ein Scherbenhaufen

„Dabei arbeitete ich mit einem Transmissions-Elektronen-Mikroskop, das mit einer Auflösung von unter einem Nanometer erstaunliche Details des Materials offenbarte“, erklärt er. „So haben wir festgestellt, dass Ryugu ein sogenannter ,Schutthaufen-Asteroid' ist, auf Englisch ,Rubble Pile'. Das Gestein ist nicht kompakt, sondern besteht aus unzähligen, quasi zusammengebackenen Gesteinsscherben“, beschreibt Langenhorst seine Beobachtungen. Das lasse den Rückschluss zu, dass der heutige Asteroid Ryugu sich erst aus den Trümmern eines Einschlags auf einem ursprünglich deutlich größeren Ur-Asteroiden zusammengeballt hatte.


Probe des Asteroiden (162173) Ryugu, die der Kapsel der Hayabusa2-Mission entnommen wurde.

Die Kristallstruktur und Zusammensetzung der Minerale sind ein Archiv der Asteroiden-Kinderstube

Die Forscher fanden auch Belege dafür, dass die „Kinderstube“ von Ryugu nicht im zentrumsnahen Bereich unseres Sonnensystems gelegen hat, wo sich der Asteroid heute bewegt, sondern im äußeren Bereich des Sonnensystems. „Dort herrschen Temperaturen deutlich unter dem Gefrierpunkt, dabei kondensieren Wasser und andere leichte Moleküle wie Methan und Ammoniak zu Eisen und ballen sich mit Mineralstaub zu ´dreckigen Schneebällen´ zusammen, den Kometen. Da jedoch in der Frühphase des Sonnensystems auch kurzlebige radioaktive Elemente beteiligt waren, erwärmte sich Ryugu relativ schnell nach der Zusammenballung, sodass das Eis schmolz und Mineralreaktionen einsetzten“, erklärt Langenhorst. Denkbar sei, dass Ryugu also früher ein Komet war. Bei seiner Annäherung an die Sonne sei das Wasser gewissermaßen verdunstet und der feste Staub blieb übrig.

Wasser und organische Materie in den Asteroiden-Trümmern gefunden

Das Hayabusa-2-Team machte dazu neue Entdeckungen. Einer seiner Kollegen entdeckte in einem Staubkorn vom Asteroiden einen Wassereinschluss, der neben Kohlensäure und Salz auch organische Moleküle enthielt. Andere fanden ein tausendstel Millimeter kleine Kügelchen organischen Materials im außerirdischen Gestein.

Vergleichbares kannte man aus Untersuchungen an einem Meteoriten namens Ivuna, der 1938 in Tansania gefunden wurde, und der in die Gruppe der kohligen Chondrite gehört. „Ivuna ist unserem Ryugu zum Verwechseln ähnlich“, berichtet er. Die kohligen Chondrite, so erklärt der Wissenschaftler, seien die ältesten Gesteine unseres Sonnensystems. „Als Urmaterie geben sie am besten die Zusammensetzung unseres Sonnensystems wieder.“

Die neuen Erkenntnisse über Evolution und Diversität der Minerale und anderen Bestandteile der Ryugu-Bodenproben versetzen die Forscher jetzt in die Lage, Aussagen über die Zeit zu treffen, in der der Asteroid entstand und sich entwickelte. „Wir vermuten, dass Ryugu von einem älteren großen Asteroiden abstammt. Dieser Ur-Asteroid bildete sich innerhalb von nur zwei Millionen Jahren nach der Geburt des Sonnensystems in dessen äußerem Bereich, wo Wasser und andere Moleküle als Eis vorhanden waren. Unter radioaktiver Erwärmung schmolz das Eis, wobei sich in diesem Prozess der aquatischen Alteration neue Minerale wie Schichtsilikate, Carbonate und Eisenoxide im Ur-Asteroiden kristallisierten. All diese Prozesse waren nach nur etwa fünf Millionen Jahren beendet. Danach kam es zu der kosmischen Kollision, bei der Teile des Ur-Asteroiden abgesprengt wurden, aus denen sich der neue Asteroid Ryugu formte“, fasst Langenhorst die Ergebnisse des Forschungsteams zusammen.

„Auch wenn wir Prozesse aus der Frühzeit unseres Sonnensystems immer besser aufklären, so ist es wohl unwahrscheinlich, die Rätsel um den Beginn unseres Sonnensystems je vollständig lösen zu können“, räumt er ein. Dass er aktuell an weiteren astro-mineralogischen Themen arbeitet, zeigt jedoch, dass man sich da nicht ganz sicher sein sollte.


Die News der letzten 14 Tage 8 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.

11.04.2018
Geophysik

Stärkere Belege für Abschwächung des Golfstromsystems
Die als Golfstromsystem bekannte Umwälzströmung im Atlantik – eines der wichtigsten Wärmetransportsysteme der Erde, das warmes Wasser nach Norden und kaltes Wasser nach Süden pumpt – ist heute schwächer als je zuvor in den vergangenen 1000 Jahren.
29.10.2019
Strömungsmechanik | Geophysik

Herausforderungen in der Windenergieforschung
Welche Innovationen sind erforderlich, damit Wind zu einer der weltweit wichtigsten Quellen für kostengünstige Stromerzeugung werden kann?
27.09.2022
Geophysik

Wasser hunderte Kilometer tief: Ozean im Erdinnern?
Die Übergangszone zwischen oberem und unterem Erdmantel enthält erhebliche Mengen Wasser.
09.10.2019
Exoplaneten | Geophysik

Wenn die Erde flüssig wäre
Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück.
01.11.2022
Planeten | Wellenlehre | Geophysik

Was Wellen über die Marskruste verraten
Nach zwei grossen Meteoriteneinschlägen auf dem Mars beobachteten Forschende erstmals ausserhalb der Erde seismische Wellen, die sich entlang der Oberfläche eines Planeten ausbreiteten.
19.10.2022
Strömungsmechanik | Geophysik

Wärmere Ozeane - höhere Niederschlagsmenge
Die Erwärmung der oberen Ozeanschichten im westlichen tropischen Pazifik wird künftig zu stärkeren Winden und mehr Regen über Ostasien führen.
17.10.2019
Satelliten und Sonden | Wellenlehre | Geophysik

Dank Hochfrequenz wird Kommunikation ins All möglich
Wir nutzen sie jeden Tag: Niederfrequenzen - über einzelne oder mehrere Antennen mit verschiedenen Frequenzhöhen.
08.11.2019
Strömungsmechanik | Geophysik

Turbulenz sorgt für Eis in Wolken
Vertikale Luftbewegungen erhöhen die Eisbildung in Mischphasenwolken.
20.08.2019
Sonnensysteme | Geophysik

Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems
Bei gewaltigen Sternenexplosionen entsteht das seltene Isotop Eisen-60.
31.07.2019
Geophysik

Wie man erkennt, wo ein Vulkan ausbricht
Forschende des Deutschen GeoForschungsZentrums GFZ testen innovative Methode zur Vorhersage neuer Schlote im italienischen Vulkangebiet "Campi Flegrei" nahe Neapel.
21.02.2020
Geophysik

Wie Erdbeben die Schwerkraft verformen
Forschende des Deutschen GeoForschungsZentrums GFZ in Potsdam haben einen Algorithmus entwickelt, der erstmals mit hoher Genauigkeit ein durch Erdbeben verursachtes Gravitationssignal beschreiben kann.
29.08.2019
Exoplaneten | Monde | Geophysik

Hinweise auf vulkanisch aktiven Exo-Mond
Ein Mond aus Gestein und brodelnder Lava umkreist möglicherweise einen Planeten 550 Lichtjahre von uns entfernt.
05.12.2019
Strömungsmechanik | Geophysik

Neue Klimadaten dank kompaktem Alexandritlaser
Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter.
02.11.2022
Planeten | Geophysik

Neue Daten sprechen für Magma auf dem Mars
Bisher wurde der Mars als geologisch toter Planet angesehen, doch seismische Wellen deuten nun darauf hin, dass die Marsoberfläche immer noch von Vulkanismus geprägt wird.
26.10.2022
Strömungsmechanik | Geophysik

Neue Windfeldmodelle bilden Böen korrekt ab
Mit einem neuen statistischen Modell ist es Forschenden gelungen, turbulente Schwankungen des Windes deutlich realistischer abzubilden, als es bisher möglich war.
25.06.2019
Geophysik | Geschichte der Physik

Internationales Team rekonstruiert erstmals Eiskeime von Wolken der Arktis der vergangenen 500 Jahre
Erstmals hat ein internationales Forschungsteam unter Leitung des Leibniz-Institut für Troposphärenforschung (TROPOS) Eiskeime der Atmosphäre aus Eisbohrkernen untersucht, die Hinweise zur Art der Bewölkung der letzten 500 Jahre in der Arktis geben.
05.06.2019
Elektrodynamik | Geophysik

Magnetismus im Erdmantel entdeckt
Das riesige Magnetfeld, das die Erde umgibt, sie vor Strahlen und geladenen Teilchen aus dem All schützt und an dem sich viele Tiere sogar orientieren können, ist in ständigem Wandel – weshalb es auch unter ständiger Beobachtung von Geowissenschaftlern ist.
21.10.2019
Strömungsmechanik | Geophysik

Wie ein Molekül das Klima verändern kann
Wolken entstehen aus Wassertröpfchen, die sich um Aerosolpartikel in der Atmosphäre bilden.
13.06.2019
Satelliten und Sonden | Geophysik

Schwerefeldbestimmung der Erde so genau wie noch nie
Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde.
01.10.2019
Geophysik

Frühe Warnsignale vor fatalem Kollaps des Krakatau-Vulkans
Am 22.
25.09.2022
Sonnensysteme | Kometen und Asteroiden | Geophysik

Untersucht: Bodenproben des Asteroiden Ryugu
Ein internationales Forschungsteam hat Bodenproben untersucht, die die japanische Raumsonde Hayabusa-2 auf dem Asteroiden Ryugu einsammelte.
27.11.2019
Strömungsmechanik | Geophysik

Genaue Messungen als Grundlage für die Genehmigung von Windenergieanlagen
PTB verbessert Verfahren, um den Einfluss von Windrädern auf Navigationseinrichtungen der Luftfahrt deutlich genauer zu bestimmen.
01.05.2019
Geophysik

Rätsel um „unsichtbares“ Gold entschlüsselt
In der größten Goldlagerstätte der USA in Nevada kommt Gold nicht in Form von Nuggets vor.
16.09.2019
Geophysik

Geochemiker messen neue Zusammensetzung des Erdmantels
Wie ist das Innere der Erde chemisch aufgebaut?