Quantentechnologien: Neue Einblicke in supraleitende Vorgänge

Physik-News vom 10.02.2020


Supraleiter gelten als vielversprechende Bauteile für Quantencomputer, funktionieren bisher jedoch nur bei sehr niedrigen Temperaturen. Wissenschaftler der Universität Münster und des Forschungszentrums Jülich haben jetzt erstmals eine sogenannte Energiequantisierung in Nanodrähten aus Hochtemperatur-Supraleitern nachgewiesen. Die Studie ist in der Fachzeitschrift „Nature Communications“ erschienen.

Die Entwicklung eines Quantencomputers, der Probleme lösen kann, die klassische Computer nur mit großem Aufwand oder gar nicht meistern – das ist das Ziel, dem derzeit immer mehr Forscherteams auf der ganzen Welt hinterhereifern. Der Grund: Quanteneffekte, die der Welt der kleinsten Teilchen und Strukturen entspringen, ermöglichen viele neue technologische Anwendungen. Als vielversprechende Bauteile, um Quantencomputer zu realisieren, gelten sogenannte Supraleiter, die Informationen und Signale nach den Gesetzten der Quantenmechanik verarbeiten. Ein Knackpunkt supraleitender Nanostrukturen ist jedoch, dass sie nur bei sehr niedrigen Temperaturen funktionieren und daher nur schwer in praktische Anwendungen zu bringen sind.


Messaufbau zur Charakterisierung von Nanobrücken in einem Kryostaten.

Publikation:


M. Lyatti et al.
Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7–x nanowires
Nature Communications

DOI: 10.1038/s41467-020-14548-x



Wissenschaftlerinnen und Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU) und des Forschungszentrums Jülich haben jetzt erstmals eine sogenannte Energiequantisierung in Nanodrähten aus Hochtemperatur-Supraleitern nachgewiesen – Supraleitern, bei denen diejenige Temperatur erhöht ist, unterhalb derer quantenmechanische Effekte vorherrschen. Der supraleitende Nanodraht nimmt dann nur noch ausgewählte Energiezustände an, die zur Kodierung von Informationen genutzt werden könnten. In den Hochtemperatur-Supraleitern beobachteten die Forscher außerdem erstmals die Aufnahme eines einzelnen Photons, eines Lichtteilchens, das der Informationsübertragung dient.


Schematische Darstellung einer Hochtemperatur-supraleitenden Nanobrücke (rosa) in Goldkontakten (gelb).

„Unsere Ergebnisse können zum einen dazu beitragen, zukünftig eine erheblich vereinfachte Kühltechnik in den Quantentechnologien einzusetzen, zum anderen bieten sie uns vollkommen neue Einblicke in die immer noch unverstandenen Prozesse supraleitender Zustände und deren Dynamik“, betont Studienleiter Jun.-Prof. Dr. Carsten Schuck vom Physikalischen Institut der WWU. Die Ergebnisse können demnach für die Entwicklung von neuartigen Computerverfahren relevant sein. Die Studie ist in der Fachzeitschrift „Nature Communications“ erschienen.

Hintergrund und Methode

Die Wissenschaftler nutzten Hochtemperatur-Supraleiter aus den Elementen Yttrium, Barium, Kupferoxid und Sauerstoff, kurz YBCO, aus denen sie wenige Nanometer dünne Drähte herstellten. Wenn Strom durch diese Strukturen geleitet wird, kommt es zu physikalischen Dynamiken, die Phasenschlupf genannt werden. Im Falle der YBCO-Nanodrähte können Fluktuationen der Ladungsdichte bewirken, dass sich der Suprastrom ändert. Die Forscher untersuchten die Vorgänge in den Nanodrähten bei Temperaturen von unter 20 Kelvin, das entspricht minus 253 Grad Celsius. In Kombination mit Modell-Rechnungen wiesen sie eine Quantisierung der Energiezustände in den Nanodrähten nach.

Die ermittelte Temperatur, bei der die Drähte in den Quantenzustand übergingen, lag bei zwölf bis 13 Kelvin – eine Temperatur, die einige hundertmal höher ist als die Temperatur, die bei den üblicherweise eingesetzten Materialien benötigt wird. Somit war es den Wissenschaftlern möglich, Resonatoren, also auf bestimmte Frequenzen abgestimmte schwingfähige Systeme, mit viel längeren Lebenszeiten herzustellen und die quantenmechanischen Zustände länger aufrecht zu halten. Das ist eine Voraussetzung dafür, langfristig immer größere Quantencomputer zu entwickeln.

Absorption eines einzelnen Photons in Hochtemperatur-Supraleitern

Weitere wichtige Bauteile für die Entwicklung von Quantentechnologien, aber potenziell auch für die medizinische Diagnostik, sind Detektoren, die selbst einzelne Photonen nachweisen können. Bereits seit einigen Jahren arbeitet die Forschergruppe um Carsten Schuck an der WWU daran, solche Einzelphotonen-Detektoren auf Basis von Supraleitern zu entwickeln. Was bei tiefen Temperaturen schon gut klappt, versuchen Wissenschaftler auf der ganzen Welt seit mehr als einem Jahrzehnt auch mit Hochtemperatur-Supraleitern zu erreichen. In den für die Studie verwendeten YBCO-Nanodrähten gelang dieser Versuch nun erstmalig. „Unsere neuen Erkenntnisse ebnen den Weg für neue experimentell überprüfbare theoretische Beschreibungen und technologische Entwicklungen“, betont Co-Autor Martin Wolff aus der Forschergruppe Schuck.

Die Entwicklung eines Quantencomputers, der Probleme lösen kann, die klassische Computer nur mit großem Aufwand oder gar nicht meistern – das ist das Ziel, dem derzeit immer mehr Forscherteams auf der ganzen Welt hinterhereifern. Der Grund: Quanteneffekte, die der Welt der kleinsten Teilchen und Strukturen entspringen, ermöglichen viele neue technologische Anwendungen. Als vielversprechende Bauteile, um Quantencomputer zu realisieren, gelten sogenannte Supraleiter, die Informationen und Signale nach den Gesetzten der Quantenmechanik verarbeiten. Ein Knackpunkt supraleitender Nanostrukturen ist jedoch, dass sie nur bei sehr niedrigen Temperaturen funktionieren und daher nur schwer in praktische Anwendungen zu bringen sind.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

02.03.2020
Quantencomputer

Mit der Leerstelle zum Quantenbit
Physiker aus Würzburg haben zum ersten Mal Spinzentren experimentell in zweidimensionalen Materialien beobachtet.
24.10.2019
Quantencomputer

Abhörsichere Kommunikation zwischen Quantencomputern realisiert: Das Quanteninternet kommt in Reichweite
Einem internationalen Team, angeführt von Physikern der Technischen Universität München (TUM), ist es erstmals gelungen, eine sichere Quantenkommunikation im Mikrowellenbereich in einem lokalen Quanten-Netzwerk experimentell zu realisieren.
14.01.2020
Quantenphysik | Quantencomputer

Quantenverschlüsselung unter dem Meer realisiert
Ein internationales Team rund um Forscher/innen der Österreichischen Akademie der Wissenschaften und der Universität Wien etablierte via Unterseekabel eine quantenverschlüsselte Verbindung zwischen Sizilien und Malta.
26.06.2019
Quantencomputer

Eine Brücke zur Quantenwelt
Forschende am IST Austria entwickeln Prototypen einer Schnittstelle, die in Zukunft Quantencomputer miteinander verbinden könnte.
29.08.2019
Quantencomputer

Quanteninternet nimmt Gestalt an
Ein Team um den Innsbrucker START-Preisträger Ben Lanyon hat erstmals ein mit Materie verschränktes Lichtteilchen über ein 50 Kilometer langes Glasfaserkabel übertragen.
14.10.2022
Atomphysik | Quantencomputer

Spektroskopisch erfassbare Quantenbits
Moleküle werden für Quantencomputer interessant, wenn sie einzeln ansteuerbare, miteinander wechselwirkende Quantenbit-Zentren aufweisen.
03.06.2019
Festkörperphysik | Optik | Quantencomputer

Mit Licht kontrollierte neuartige Supraleiter könnten zukünftige Quantencomputer ermöglichen
Eine der zentralen Herausforderungen der Physik ist die Kontrolle der Quanteneigenschaften von Materialien.
02.11.2022
Quantencomputer

Neue Art von universellen Quantencomputern
Die Rechenleistung von Quantencomputern ist aktuell noch sehr gering, sie zu steigern erweist sich derzeit noch als große Herausforderung.
10.02.2020
Festkörperphysik | Quantencomputer

Quantentechnologien: Neue Einblicke in supraleitende Vorgänge
Supraleiter gelten als vielversprechende Bauteile für Quantencomputer, funktionieren bisher jedoch nur bei sehr niedrigen Temperaturen.
10.10.2022
Atomphysik | Quantencomputer

Quantencomputer im Einsatz in der Chemie
Quantencomputer gehören zu den zentralen Zukunftstechnologien des 21sten Jahrhunderts - ihr Potenzial übertrifft selbst die besten Superrechner.
10.01.2020
Quantencomputer

Robuste Rechenoperationen für den Quantencomputer
Neues Verfahren zur Steuerung von Qubits mit Mikrowellenpulsen reduziert Fehlerquote und erhöht Effizienz.
01.11.2019
Festkörperphysik | Quantencomputer

Der ganz besondere rote Diamant - Forschung zu angewandter Quantentechnologie an der Universität Leipzig
Physikern der Universität Leipzig ist ein wichtiger Schritt bei der Nutzung der Quantentechnologie für Computer und Sensoren gelungen.
15.05.2019
Quantencomputer

Quanten-Cloud-Computing mit Selbstcheck
Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf.
14.11.2019
Quantenoptik | Quantencomputer

Eine Einbahnstraße für Licht
Licht lässt sich in unterschiedliche Richtungen lenken, meist auch wieder den gleichen Weg zurück.
10.07.2019
Quantencomputer

Knobeln auf dem Quanten-Schachbrett
Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte.
09.05.2019
Teilchenphysik | Quantencomputer

Schneller rechnen mit Quasi-Teilchen
Auf dem Weg zu topologischen Quantencomputern ist Physikern der Universität Würzburg ein wichtiger Fortschritt gelungen.
13.08.2019
Quantenphysik | Quantencomputer

Schrödingers Katze mit 20 Qubits
Tot oder lebendig, linksdrehend oder rechtsdrehend – in der Quantenwelt können Teilchen wie die berühmte Analogie von Schrödingers Katze all das gleichzeitig sein.