imported>Jü K (.) |
imported>Crazy1880 K (Vorlagen-fix (Online)) |
||
Zeile 1: | Zeile 1: | ||
In der [[Physik]] beschreibt ein '''Feld''' die räumliche Verteilung einer [[Physikalische Größe|physikalischen Größe]]. Dabei kann es sich um ein [[Skalarfeld]] | In der [[Physik]] beschreibt ein '''Feld''' die räumliche Verteilung einer [[Physikalische Größe|physikalischen Größe]]. Dabei kann es sich um ein [[Skalarfeld]] (wie z. B. die [[Temperatur]], das [[Gravitationspotential]] oder das [[Elektrostatik#Potential und Spannung|elektrostatische Potential]]), um ein [[Vektorfeld]] (wie z. B. die [[Strömung]]sgeschwindigkeit, das [[Gravitationsfeld]] oder das [[Elektrisches Feld|elektrische Feld]]) oder um ein höherdimensionales [[Tensorfeld]] wie den [[Energie-Impuls-Tensor]] handeln. Der Wert eines Feldes an einem bestimmten Ort wird in manchen Fällen [[Feldstärke]] genannt. Die Lehre von den physikalischen Feldern nennt man [[Feldtheorie (Physik)|Feldtheorie]]. | ||
Manche Felder sind darüber hinaus selbst physikalische Objekte: | Manche Felder sind darüber hinaus selbst physikalische Objekte: | ||
*Sie erfüllen [[Bewegungsgleichung]]en, hier ''Feldgleichungen'' genannt | * Sie erfüllen [[Bewegungsgleichung]]en, hier ''Feldgleichungen'' genannt. Für das [[Elektrisches Feld|elektrische]] und das [[Magnetismus|magnetische Feld]] sind die [[Maxwell-Gleichungen]] die Bewegungsgleichungen. | ||
*Wie Körper besitzen Felder Energie (die '''Feldenergie'''), Impuls und auch Drehimpuls. Die Kraftwirkung zwischen zwei Körpern im leeren Raum wird dadurch erklärt, dass ein Feld diese Größen von einem Körper aufnimmt und sie auf den anderen Körper überträgt. | * Wie Körper besitzen Felder Energie (die '''Feldenergie'''), Impuls und auch Drehimpuls. Die Kraftwirkung zwischen zwei Körpern im leeren Raum wird dadurch erklärt, dass ein Feld diese Größen von einem Körper aufnimmt und sie auf den anderen Körper überträgt. | ||
In der [[Quantenfeldtheorie]] ist das Feld der fundamentale Begriff, aus dem alle Eigenschaften der Materie und Kräfte entwickelt werden. Ein Feld kann hier nur in definierten Stufen angeregt werden, die als Erzeugung einer entsprechenden Anzahl von [[Feldquant]]en beschrieben werden. Alle bekannten Materieteilchen bestehen aus solchen Feldquanten bestimmter Felder, während die Kräfte zwischen ihnen durch [[Austauschteilchen]], d. h. Feldquanten bestimmter anderer Felder, bewirkt werden. Die einzelnen Feldquanten sind die fundamentalen [[Elementarteilchen]]. | In der [[Quantenfeldtheorie]] ist das Feld der fundamentale Begriff, aus dem alle Eigenschaften der Materie und Kräfte entwickelt werden. Ein Feld kann hier nur in definierten Stufen angeregt werden, die als Erzeugung einer entsprechenden Anzahl von [[Feldquant]]en beschrieben werden. Alle bekannten Materieteilchen bestehen aus solchen Feldquanten bestimmter Felder, während die Kräfte zwischen ihnen durch [[Austauschteilchen]], d. h. Feldquanten bestimmter anderer Felder, bewirkt werden. Die einzelnen Feldquanten sind die fundamentalen [[Elementarteilchen]]. | ||
Zeile 11: | Zeile 11: | ||
Felder geben einerseits die räumliche Verteilung bestimmter physikalischer Eigenschaften an: Beispielsweise kann die räumliche Verteilung der [[Temperatur]] einer Herdplatte durch ein Temperaturfeld beschrieben werden oder die räumliche Verteilung der [[Dichte]] in einem [[Körper (Physik)|Körper]] durch ein Massendichtefeld. In diesem Sinne ist ein Feld ein mathematisches Hilfsmittel, das die eigentlich punktweise definierten physikalischen Eigenschaften eines ausgedehnten oder aus Untersystemen zusammengesetzten [[Physikalisches System|Systems]] in einer Größe, ''dem Feld'', zusammenfasst. | Felder geben einerseits die räumliche Verteilung bestimmter physikalischer Eigenschaften an: Beispielsweise kann die räumliche Verteilung der [[Temperatur]] einer Herdplatte durch ein Temperaturfeld beschrieben werden oder die räumliche Verteilung der [[Dichte]] in einem [[Körper (Physik)|Körper]] durch ein Massendichtefeld. In diesem Sinne ist ein Feld ein mathematisches Hilfsmittel, das die eigentlich punktweise definierten physikalischen Eigenschaften eines ausgedehnten oder aus Untersystemen zusammengesetzten [[Physikalisches System|Systems]] in einer Größe, ''dem Feld'', zusammenfasst. | ||
Ein Feld kann aber auch eine eigenständige physikalische [[Entität]] sein, die nicht als zusammengesetztes System oder mathematische Hilfsgröße angesehen werden darf. Das Feld kann dann genauso wie ein [[Teilchen]], ein [[starrer Körper]] oder ein anderes physikalisches System einen [[Impuls]] und [[Drehimpuls]] tragen, [[Energie]] enthalten und sich in [[ | Ein Feld kann aber auch eine eigenständige physikalische [[Entität]] sein, die nicht als zusammengesetztes System oder mathematische Hilfsgröße angesehen werden darf. Das Feld kann dann genauso wie ein [[Teilchen]], ein [[starrer Körper]] oder ein anderes physikalisches System einen [[Impuls]] und [[Drehimpuls]] tragen, [[Energie]] enthalten und sich in [[Angeregter Zustand|angeregten Zuständen]] befinden. Beispielsweise ist ein [[Lichtstrahl]], der Energie durch den leeren Raum transportiert, wie durch den [[Poynting-Vektor]] beschrieben, ein (zeitabhängiges) Feld und steht in der physikalischen Hierarchie der Entitäten auf der gleichen Ebene wie Teilchen oder andere [[Materie (Physik)|Materie]].<ref name="Bohm1980">{{Literatur |Autor=David Bohm |Titel=Causality and chance in modern physics |Verlag=University of Pennsylvania Press |Datum=1980 |ISBN=978-0-8122-1002-6 |Seiten=42 |Online={{Google Buch |BuchID=nweG_wrUHuAC |Seite=42}} |Abruf=2012-01-29}}</ref> | ||
In diesem Sinne kann z. B. das [[Elektrisches Feld|elektrische Feld]] <math>\vec{E}(\vec{r},t)</math> einerseits einfach nur als räumliche Verteilung der [[Elektrische Feldstärke|elektrischen Feldstärke]] angesehen werden, oder aber als eigenständiges nicht reduzierbares System. | In diesem Sinne kann z. B. das [[Elektrisches Feld|elektrische Feld]] <math>\vec{E}(\vec{r},t)</math> einerseits einfach nur als räumliche Verteilung der [[Elektrische Feldstärke|elektrischen Feldstärke]] angesehen werden, oder aber als eigenständiges nicht reduzierbares System. | ||
=== Dynamik von Feldern === | === Dynamik von Feldern === | ||
Im Allgemeinen sind Felder zeitabhängig, also Funktionen von Ort und Zeit. Die [[Dynamik (Physik)|Dynamik]] eines Teilchens wird mittels [[Bewegungsgleichung]]en beschrieben; entsprechend wird die Dynamik von Feldern, also die raum-zeitliche Änderung der Feldgröße, mittels | Im Allgemeinen sind Felder zeitabhängig, also Funktionen von Ort und Zeit. Die [[Dynamik (Physik)|Dynamik]] eines Teilchens wird mittels [[Bewegungsgleichung]]en beschrieben; entsprechend wird die Dynamik von Feldern, also die raum-zeitliche Änderung der Feldgröße, mittels '''Feldgleichungen''' beschrieben. Der wesentliche Unterschied zwischen Feldgleichungen und Bewegungsgleichungen von Teilchen besteht darin, dass eine Feldgleichung die Dynamik unendlich vieler [[Freiheitsgrad]]e beschreibt, da ein Feld unendlich viele Freiheitsgrade besitzt (die Feldgröße an jedem Raumpunkt bildet einen Freiheitsgrad und ein Feld ist im Allgemeinen an unendlich vielen Raumpunkten definiert). Die Bewegungsgleichungen eines Teilchen beschreiben dagegen nur die Dynamik endlich vieler Freiheitsgrade (meistens die zeitliche Entwicklung der drei räumlichen Koordinaten des Teilchens). | ||
==Geschichte des Feldbegriffs== | == Geschichte des Feldbegriffs == | ||
Der Ursprung des Konzeptes des Feldes liegt im 18. Jahrhundert, als in der Kontinuumsmechanik und der Fluidmechanik die räumliche Verteilung bestimmter Größen thematisiert wurde. Es wurde nicht als eigenständige Entität angesehen und die Dynamik der Felder wurde mittels der newtonschen Teilchen-Mechanik aus den Eigenschaften der dem Feld zugrundeliegenden Moleküle oder Volumenelemente abgeleitet. Eine ganz neue Bedeutung erhielt der Feldbegriff durch die aufkommende [[Elektrodynamik]] am Ende des 19. Jahrhunderts, da das elektromagnetische Feld nicht als makroskopischer Zustand aufgebaut aus mikroskopischen Untersystemen erklärt werden konnte. Das elektromagnetische Feld wurde zu einer neuen irreduziblen Entität.<ref>Internationale Tagung ''[https://www.uni-bielefeld.de/(en)/ZIF/AG/1999/10-11-Stoeckler.html Ontological Aspects of Quantum Field Theory]'' (abgerufen am 27. Januar 2017), Zentrum für Interdisziplinäre Forschung der [[Universität Bielefeld]], 11.–13. Oktober 1999 (geleitet von Manfred Stöckler, [[Andreas Bartels]], [[Brigitte Falkenburg]], [[Michael Drieschner]] und [[Allen Hirshfeld]]).</ref><ref name="KuhlmannLyre2002">{{cite book|author=Meinard Kuhlmann, Holger Lyre, Andrew Wayne|title=Ontological aspects of quantum field theory|url= | Der Ursprung des Konzeptes des Feldes liegt im 18. Jahrhundert, als in der Kontinuumsmechanik und der Fluidmechanik die räumliche Verteilung bestimmter Größen thematisiert wurde. Es wurde nicht als eigenständige Entität angesehen und die Dynamik der Felder wurde mittels der newtonschen Teilchen-Mechanik aus den Eigenschaften der dem Feld zugrundeliegenden Moleküle oder Volumenelemente abgeleitet. Eine ganz neue Bedeutung erhielt der Feldbegriff durch die aufkommende [[Elektrodynamik]] am Ende des 19. Jahrhunderts, da das [[Elektromagnetisches Feld|elektromagnetische Feld]] nicht als makroskopischer Zustand aufgebaut aus mikroskopischen Untersystemen erklärt werden konnte. Das elektromagnetische Feld wurde zu einer neuen irreduziblen Entität.<ref>Internationale Tagung ''[https://www.uni-bielefeld.de/(en)/ZIF/AG/1999/10-11-Stoeckler.html Ontological Aspects of Quantum Field Theory]'' (abgerufen am 27. Januar 2017), Zentrum für Interdisziplinäre Forschung der [[Universität Bielefeld]], 11.–13. Oktober 1999 (geleitet von Manfred Stöckler, [[Andreas Bartels]], [[Brigitte Falkenburg]], [[Michael Drieschner]] und [[Allen Hirshfeld]]).</ref><ref name="KuhlmannLyre2002">{{cite book|author=Meinard Kuhlmann, Holger Lyre, Andrew Wayne|title=Ontological aspects of quantum field theory|url=https://books.google.de/books?id=MDfa9qydY5EC&pg=PA8&redir_esc=y&hl=de|date=15 June 2002|publisher=World Scientific|isbn=978-981-238-182-8|pages=8–}}</ref> [[Michael Faraday]] und [[James Clerk Maxwell]] waren noch der Meinung, dass das elektromagnetische Feld nur ein angeregter Zustand des [[Äther (Physik)|Äthers]] ist und führten damit das Feld auf Bewegung oder [[Spannung (Mechanik)|mechanische Spannungen]] in einer Materieform, dem Äther, zurück. Doch das [[Michelson-Morley-Experiment]] widersprach der Äthertheorie. Die Existenz des Äthers, der den leeren Raum ausfülle, wurde fortan in der Physik verworfen. Die Beobachtung, dass das elektromagnetische Feld auch im [[Vakuum]], ohne Trägermaterie, ohne eine unsichtbare Trägersubstanz wie den Äther existiert, führte dazu, dass das elektrische Feld als eigenständiges physikalisches System aufgefasst wurde.<ref name="Bohm1980" /> Heute steht der Begriff des Feldes dem Begriff der Materie (mindestens) gleichberechtigt gegenüber. Der leere Raum kann sowohl Materie als auch Felder enthalten. In der [[Quantenfeldtheorie]] schließlich werden auch die Materieteilchen als [[Feldquant]]en, d. h. gequantelte Anregungen von Feldern angesehen. Die Frage, ob Teilchen oder Felder letztlich das „Fundamentalere“ in der Natur sind, wird bis heute (2018) kontrovers diskutiert. Die meisten Physiker sind allerdings der quantenfeldtheoretischen Ansicht, dass es weder lokalisierte Teilchen noch leeren Raum gibt, sondern nur Felder (und deren Quanten, die an jeder Stelle, an der das Feld nicht null ist, gefunden werden können).<ref>Art Hobson: ''There are no particles, there are only fields.'' Am.J.Phys.81,211(2013). Aus dem Amerikanischen: [https://www.moderne-physik.eu/ ''Es gibt keine Teilchen, es gibt nur Felder'']</ref> | ||
== Das Feld als Träger von Wechselwirkungen == | == Das Feld als Träger von Wechselwirkungen == | ||
Die [[newtonsche Gravitationstheorie]] ist eine [[Nahwirkung und Fernwirkung|Fernwirkungstheorie]], da in dieser Theorie nicht erklärt wird, wie ein von Körper A entfernter Körper B die Anwesenheit von A spürt, wie also die Gravitationswechselwirkung durch den leeren Raum transportiert wird. Außerdem ist die Ausbreitungsgeschwindigkeit der Wechselwirkung in dieser feldlosen Theorie unbegrenzt. Laut der [[Relativitätstheorie]] gibt es aber eine obere Grenze der Ausbreitungsgeschwindigkeit für alle Wechselwirkungen und zwar die [[Lichtgeschwindigkeit]]. Wechselwirkungstheorien müssen, um die [[Kausalität]] von Ereignissen nicht zu verletzen, [[Lokalität (Physik)|lokal]] sein. Mit Hilfe des Feldbegriffs können Wechselwirkungen lokal beschrieben werden.<ref name="Lange2002">{{cite book|author=Marc Lange|title=An introduction to the philosophy of physics: locality, fields, energy and mass|url= | Die [[newtonsche Gravitationstheorie]] ist eine [[Nahwirkung und Fernwirkung|Fernwirkungstheorie]], da in dieser Theorie nicht erklärt wird, wie ein von Körper A entfernter Körper B die Anwesenheit von A spürt, wie also die Gravitationswechselwirkung durch den leeren Raum transportiert wird. Außerdem ist die Ausbreitungsgeschwindigkeit der Wechselwirkung in dieser feldlosen Theorie unbegrenzt. Laut der [[Relativitätstheorie]] gibt es aber eine obere Grenze der Ausbreitungsgeschwindigkeit für alle Wechselwirkungen und zwar die [[Lichtgeschwindigkeit]]. Wechselwirkungstheorien müssen, um die [[Kausalität]] von Ereignissen nicht zu verletzen, [[Lokalität (Physik)|lokal]] sein. Mit Hilfe des Feldbegriffs können Wechselwirkungen lokal beschrieben werden.<ref name="Lange2002">{{cite book|author=Marc Lange|title=An introduction to the philosophy of physics: locality, fields, energy and mass|url=https://books.google.de/books?id=-NCgDlv0_X8C&redir_esc=y&hl=de|accessdate=30. Januar 2012|date=24 June 2002|publisher=Wiley-Blackwell|isbn=978-0-631-22501-0|pages=26 ff.}}</ref> Der Körper A ist vom Gravitationsfeld umgeben und reagiert auf die Änderungen des Feldes in seiner Umgebung und nicht direkt auf die Verschiebung anderer Körper, die das Feld erzeugen. Das Feld ist also Träger der Wechselwirkung. Feldgleichungen beschreiben, wie und mit welcher Geschwindigkeit sich Störungen in einem solchen Wechselwirkungsfeld ausbreiten, also auch mit welcher Geschwindigkeit A von der Versetzung von B erfährt. Die Feldgleichungen der Gravitation sind die [[Einsteinsche Feldgleichungen|einsteinschen Feldgleichungen]], die Feldgleichungen des Elektromagnetismus die [[Maxwell-Gleichungen]]. | ||
== Einteilung von Feldern == | == Einteilung von Feldern == | ||
[[Datei:Gradient.jpg| | [[Datei:Gradient.jpg|mini|Darstellung eines Skalarfeldes, z. B. Temperaturverteilung einer Fläche. Punkte hoher Temperatur werden durch Rot und Punkte niedriger Temperatur durch Blau dargestellt. Über diesem Skalarfeld ist ein Vektorfeld gezeichnet, ein Feld, das jedem Punkt auf der Fläche einen Vektor zuordnet. Hier ist ein spezielles Vektorfeld gezeigt, und zwar das [[Gradientenfeld]] des unterliegenden Skalarfeldes.]] | ||
[[Datei:Vector Field on a Sphere.png| | [[Datei:Vector Field on a Sphere.png|mini|Ein Vektorfeld auf einer Kugel. Jedem Punkt auf der Oberfläche der Kugel ist ein an diesen Punkt [[gebundener Vektor]] zugeordnet, welcher als Pfeil dargestellt wird.]] | ||
Der Feldbegriff findet in allen Zweigen der Physik Anwendung, und zur speziellen Charakterisierung haben sich viele spezielle Feldbegriffe durchgesetzt. Dabei kann dasselbe Feld unter mehrere der folgenden speziellen Feldbegriffe fallen. | Der Feldbegriff findet in allen Zweigen der Physik Anwendung, und zur speziellen Charakterisierung haben sich viele spezielle Feldbegriffe durchgesetzt. Dabei kann dasselbe Feld unter mehrere der folgenden speziellen Feldbegriffe fallen. | ||
Ein Kriterium zur Charakterisierung von Feldern ist die physikalische Natur der Feldgröße: [[Dichtefeld]], [[Temperaturfeld]], [[Geschwindigkeitsfeld]], [[Gravitationsfeld]], [[Elektrisches Feld]], [[Magnetismus|Magnetfeld]], ([[Konservatives Kraftfeld|Konservatives]]) [[Kraftfeld (Physik)|Kraftfeld]] und [[Schallfeldgröße|Schallfeld]]. | Ein Kriterium zur Charakterisierung von Feldern ist die physikalische Natur der Feldgröße: [[Dichtefeld]], [[Temperaturfeld]], [[Geschwindigkeitsfeld]], [[Gravitationsfeld]], [[Elektrisches Feld]], [[Magnetismus|Magnetfeld]], ([[Konservatives Kraftfeld|Konservatives]]) [[Kraftfeld (Physik)|Kraftfeld]] und [[Schallfeldgröße|Schallfeld]]. | ||
Ein anderes Kriterium ist die mathematische Natur der Feldgröße: [[Skalarfeld]]er haben [[Skalar (Physik)|Skalare]] als Funktionswerte, etwa die [[Massedichte]] oder die Temperatur. Ein wichtiges Skalarfeld ist das physikalische [[Potential (Physik)|Potential]]. [[Vektorfeld]]er haben [[Vektor]]en als Funktionswerte, etwa die [[Kraft]] oder die [[elektrische Feldstärke]]; [[Tensorfeld]]er haben [[Tensor]]en als Funktionswerte, etwa die [[Spannung (Mechanik)|elastische Spannung]]; [[Spinorfeld]]er haben [[Spinor]]en als Funktionswerte, etwa die [[ | Ein anderes Kriterium ist die mathematische Natur der Feldgröße: [[Skalarfeld]]er haben [[Skalar (Physik)|Skalare]] als Funktionswerte, etwa die [[Massedichte]] oder die Temperatur. Ein wichtiges Skalarfeld ist das physikalische [[Potential (Physik)|Potential]]. [[Vektorfeld]]er haben [[Vektor]]en als Funktionswerte, etwa die [[Kraft]] oder die [[elektrische Feldstärke]]; [[Tensorfeld]]er haben [[Tensor]]en als Funktionswerte, etwa die [[Spannung (Mechanik)|elastische Spannung]]; [[Spinorfeld]]er haben [[Spinor]]en als Funktionswerte, etwa die Lösungen der [[Diracgleichung]] oder [[Weyl-Gleichung]] in der relativistischen Quantenmechanik. Für die Feldgröße mancher Vektorfelder ist der Name [[Feldstärke]] gebräuchlich. | ||
Felder können zusätzlich nach ihrer zeitlichen (Un)veränderlichkeit charakterisiert werden: ''Statische Felder'' besitzen Funktionswerte, die zeitunabhängig sind, und sind damit beispielsweise Gegenstand der [[Statik (Physik)|Statik]], [[Elektrostatik]], [[Magnetostatik]], [[Hydrostatik]] oder [[Aerostatik]]. ''Stationäre Felder'' besitzen Funktionswerte, die zwar im Allgemeinen | Felder können zusätzlich nach ihrer zeitlichen (Un)veränderlichkeit charakterisiert werden: ''Statische Felder'' besitzen Funktionswerte, die zeitunabhängig sind, und sind damit beispielsweise Gegenstand der [[Statik (Physik)|Statik]], [[Elektrostatik]], [[Magnetostatik]], [[Hydrostatik]] oder [[Aerostatik]]. ''Stationäre Felder'' besitzen Funktionswerte, die zwar im Allgemeinen zeitabhängig sind, sich aber im gerade betrachteten Fall nicht zeitlich ändern. Beispiele sind hier das Magnetfeld um einen ruhenden, von einem konstanten Gleichstrom durchflossenen Leiter oder eine [[stationäre Strömung]] einer [[Flüssigkeit]]. ''Quasistationär'' nennt man Felder, deren Funktionswerte sich zwar mit der Zeit ändern, doch nur so wenig, dass diese Veränderung vernachlässigbar ist. | ||
Felder können auch nach ihrer örtlichen (Un)veränderlichkeit eingeteilt werden. In einem ''[[Homogenität|homogenen]] Feld'' ist die Feldgröße an jedem Ort gleich, also ortsunabhängig. Ist dies nicht der Fall, heißt das Feld ''inhomogen''. | Felder können auch nach ihrer örtlichen (Un)veränderlichkeit eingeteilt werden. In einem ''[[Homogenität (Physik)|homogenen]] Feld'' ist die Feldgröße an jedem Ort gleich, also ortsunabhängig. Ist dies nicht der Fall, heißt das Feld ''inhomogen''. | ||
Vektorfelder können nach dem Verlauf ihrer [[Feldlinien]] charakterisiert werden. Feldlinien können von bestimmten Punkten im Raum ausgehen und in anderen Punkten verschwinden ([[Quelle und Senke]]) – Felder dieser Art heißen ganz allgemein [[ | Vektorfelder können nach dem Verlauf ihrer [[Feldlinien]] charakterisiert werden. Feldlinien können von bestimmten Punkten im Raum ausgehen und in anderen Punkten verschwinden ([[Quelle und Senke]]) – Felder dieser Art heißen ganz allgemein [[Feldtheorie (Physik)#Quellenfeld|Quellenfelder]]. Beispiel hierfür sind das [[Elektrostatisches Feld|elektrostatische Feld]] einer positiven und negativen elektrischen Ladung oder das Gravitationsfeld. Feldlinien können aber auch als stets in sich geschlossene Schleifen auftreten – Felder dieser Art heißen ganz allgemein [[Feldtheorie (Physik)#Wirbelfeld|Wirbelfelder]]. Bekanntestes Beispiel hierfür ist das Magnetfeld. Das Vektorfeld, das sich aus dem [[Gradient (Mathematik)|Gradienten]] an jedem Ort eines Potenzialfeldes ergibt, heißt [[Gradientenfeld]]. | ||
== Bildliche Darstellung von Feldern == | == Bildliche Darstellung von Feldern == | ||
[[Datei:Magnet0873.png| | [[Datei:Magnet0873.png|mini|Magnetische Feldlinien in der Umgebung eines Stabmagneten, sichtbar gemacht mit Eisenfeilspänen auf Papier]] | ||
Zweidimensionale Skalarfelder oder zweidimensionale Schnitte von höherdimensionalen Skalarfeldern können mit Hilfe von [[Höhenlinie]]n oder der Höhe entsprechend eingefärbten Punkten in einer Ebene dargestellt werden (siehe oberes nebenstehendes Bild). | Zweidimensionale Skalarfelder oder zweidimensionale Schnitte von höherdimensionalen Skalarfeldern können mit Hilfe von [[Höhenlinie]]n oder der Höhe entsprechend eingefärbten Punkten in einer Ebene dargestellt werden (siehe oberes nebenstehendes Bild). | ||
Manche zweidimensionale Vektorfelder können besonders anschaulich mit Hilfe von [[Feldlinie]]n dargestellt werden (siehe unteres nebenstehendes Bild). Die [[Tangente]] einer Feldlinie gibt die Richtung der Feldgröße (Vektor) an der jeweiligen Stelle an; der Abstand der Linien voneinander ist umgekehrt proportional dem Betrag der Feldgröße. | |||
== Literatur == | == Literatur == | ||
* {{Literatur | * {{Literatur | ||
|Autor=[[Hartmann Römer]], Michael Forger | |||
|Titel=Elementare Feldtheorie: Elektrodynamik, Hydrodynamik, spezielle Relativitätstheorie | |||
|Verlag=VCH | |||
|Ort=Weinheim | |||
|Datum=1993 | |||
|ISBN=3-527-29065-6 | |||
}} | |Online=https://freidok.uni-freiburg.de/data/405}} | ||
* {{Literatur | * {{Literatur | ||
|Autor=[[Otto Nachtmann]] | |||
|Titel=Phänomene und Konzepte der Elementarteilchenphysik | |||
|Verlag=Vieweg+Teubner | |||
|Datum=1992 | |||
|ISBN=3-528-08926-1}} | |||
}} | |||
== Weblinks == | |||
* [https://www.youtube.com/watch?v=0Eeuqh9QfNI&t=1139 Lecture 1 | Quantum Entanglements, Part 1 (Stanford)], [[Leonard Susskind]], Stanford, benutzt die Temperatur, um ein Feld zu erklären (englisch). Video, 25. September 2006 | |||
== Einzelnachweise == | == Einzelnachweise == | ||
<references /> | <references /> | ||
[[Kategorie:Feldtheorie| ]] | [[Kategorie:Feldtheorie| ]] | ||
[[Kategorie:Theoretische Elektrotechnik]] | [[Kategorie:Theoretische Elektrotechnik]] | ||
[[Kategorie:Physikalisches Grundkonzept]] | [[Kategorie:Physikalisches Grundkonzept]] |
In der Physik beschreibt ein Feld die räumliche Verteilung einer physikalischen Größe. Dabei kann es sich um ein Skalarfeld (wie z. B. die Temperatur, das Gravitationspotential oder das elektrostatische Potential), um ein Vektorfeld (wie z. B. die Strömungsgeschwindigkeit, das Gravitationsfeld oder das elektrische Feld) oder um ein höherdimensionales Tensorfeld wie den Energie-Impuls-Tensor handeln. Der Wert eines Feldes an einem bestimmten Ort wird in manchen Fällen Feldstärke genannt. Die Lehre von den physikalischen Feldern nennt man Feldtheorie.
Manche Felder sind darüber hinaus selbst physikalische Objekte:
In der Quantenfeldtheorie ist das Feld der fundamentale Begriff, aus dem alle Eigenschaften der Materie und Kräfte entwickelt werden. Ein Feld kann hier nur in definierten Stufen angeregt werden, die als Erzeugung einer entsprechenden Anzahl von Feldquanten beschrieben werden. Alle bekannten Materieteilchen bestehen aus solchen Feldquanten bestimmter Felder, während die Kräfte zwischen ihnen durch Austauschteilchen, d. h. Feldquanten bestimmter anderer Felder, bewirkt werden. Die einzelnen Feldquanten sind die fundamentalen Elementarteilchen.
Felder geben einerseits die räumliche Verteilung bestimmter physikalischer Eigenschaften an: Beispielsweise kann die räumliche Verteilung der Temperatur einer Herdplatte durch ein Temperaturfeld beschrieben werden oder die räumliche Verteilung der Dichte in einem Körper durch ein Massendichtefeld. In diesem Sinne ist ein Feld ein mathematisches Hilfsmittel, das die eigentlich punktweise definierten physikalischen Eigenschaften eines ausgedehnten oder aus Untersystemen zusammengesetzten Systems in einer Größe, dem Feld, zusammenfasst.
Ein Feld kann aber auch eine eigenständige physikalische Entität sein, die nicht als zusammengesetztes System oder mathematische Hilfsgröße angesehen werden darf. Das Feld kann dann genauso wie ein Teilchen, ein starrer Körper oder ein anderes physikalisches System einen Impuls und Drehimpuls tragen, Energie enthalten und sich in angeregten Zuständen befinden. Beispielsweise ist ein Lichtstrahl, der Energie durch den leeren Raum transportiert, wie durch den Poynting-Vektor beschrieben, ein (zeitabhängiges) Feld und steht in der physikalischen Hierarchie der Entitäten auf der gleichen Ebene wie Teilchen oder andere Materie.[1]
In diesem Sinne kann z. B. das elektrische Feld $ {\vec {E}}({\vec {r}},t) $ einerseits einfach nur als räumliche Verteilung der elektrischen Feldstärke angesehen werden, oder aber als eigenständiges nicht reduzierbares System.
Im Allgemeinen sind Felder zeitabhängig, also Funktionen von Ort und Zeit. Die Dynamik eines Teilchens wird mittels Bewegungsgleichungen beschrieben; entsprechend wird die Dynamik von Feldern, also die raum-zeitliche Änderung der Feldgröße, mittels Feldgleichungen beschrieben. Der wesentliche Unterschied zwischen Feldgleichungen und Bewegungsgleichungen von Teilchen besteht darin, dass eine Feldgleichung die Dynamik unendlich vieler Freiheitsgrade beschreibt, da ein Feld unendlich viele Freiheitsgrade besitzt (die Feldgröße an jedem Raumpunkt bildet einen Freiheitsgrad und ein Feld ist im Allgemeinen an unendlich vielen Raumpunkten definiert). Die Bewegungsgleichungen eines Teilchen beschreiben dagegen nur die Dynamik endlich vieler Freiheitsgrade (meistens die zeitliche Entwicklung der drei räumlichen Koordinaten des Teilchens).
Der Ursprung des Konzeptes des Feldes liegt im 18. Jahrhundert, als in der Kontinuumsmechanik und der Fluidmechanik die räumliche Verteilung bestimmter Größen thematisiert wurde. Es wurde nicht als eigenständige Entität angesehen und die Dynamik der Felder wurde mittels der newtonschen Teilchen-Mechanik aus den Eigenschaften der dem Feld zugrundeliegenden Moleküle oder Volumenelemente abgeleitet. Eine ganz neue Bedeutung erhielt der Feldbegriff durch die aufkommende Elektrodynamik am Ende des 19. Jahrhunderts, da das elektromagnetische Feld nicht als makroskopischer Zustand aufgebaut aus mikroskopischen Untersystemen erklärt werden konnte. Das elektromagnetische Feld wurde zu einer neuen irreduziblen Entität.[2][3] Michael Faraday und James Clerk Maxwell waren noch der Meinung, dass das elektromagnetische Feld nur ein angeregter Zustand des Äthers ist und führten damit das Feld auf Bewegung oder mechanische Spannungen in einer Materieform, dem Äther, zurück. Doch das Michelson-Morley-Experiment widersprach der Äthertheorie. Die Existenz des Äthers, der den leeren Raum ausfülle, wurde fortan in der Physik verworfen. Die Beobachtung, dass das elektromagnetische Feld auch im Vakuum, ohne Trägermaterie, ohne eine unsichtbare Trägersubstanz wie den Äther existiert, führte dazu, dass das elektrische Feld als eigenständiges physikalisches System aufgefasst wurde.[1] Heute steht der Begriff des Feldes dem Begriff der Materie (mindestens) gleichberechtigt gegenüber. Der leere Raum kann sowohl Materie als auch Felder enthalten. In der Quantenfeldtheorie schließlich werden auch die Materieteilchen als Feldquanten, d. h. gequantelte Anregungen von Feldern angesehen. Die Frage, ob Teilchen oder Felder letztlich das „Fundamentalere“ in der Natur sind, wird bis heute (2018) kontrovers diskutiert. Die meisten Physiker sind allerdings der quantenfeldtheoretischen Ansicht, dass es weder lokalisierte Teilchen noch leeren Raum gibt, sondern nur Felder (und deren Quanten, die an jeder Stelle, an der das Feld nicht null ist, gefunden werden können).[4]
Die newtonsche Gravitationstheorie ist eine Fernwirkungstheorie, da in dieser Theorie nicht erklärt wird, wie ein von Körper A entfernter Körper B die Anwesenheit von A spürt, wie also die Gravitationswechselwirkung durch den leeren Raum transportiert wird. Außerdem ist die Ausbreitungsgeschwindigkeit der Wechselwirkung in dieser feldlosen Theorie unbegrenzt. Laut der Relativitätstheorie gibt es aber eine obere Grenze der Ausbreitungsgeschwindigkeit für alle Wechselwirkungen und zwar die Lichtgeschwindigkeit. Wechselwirkungstheorien müssen, um die Kausalität von Ereignissen nicht zu verletzen, lokal sein. Mit Hilfe des Feldbegriffs können Wechselwirkungen lokal beschrieben werden.[5] Der Körper A ist vom Gravitationsfeld umgeben und reagiert auf die Änderungen des Feldes in seiner Umgebung und nicht direkt auf die Verschiebung anderer Körper, die das Feld erzeugen. Das Feld ist also Träger der Wechselwirkung. Feldgleichungen beschreiben, wie und mit welcher Geschwindigkeit sich Störungen in einem solchen Wechselwirkungsfeld ausbreiten, also auch mit welcher Geschwindigkeit A von der Versetzung von B erfährt. Die Feldgleichungen der Gravitation sind die einsteinschen Feldgleichungen, die Feldgleichungen des Elektromagnetismus die Maxwell-Gleichungen.
Der Feldbegriff findet in allen Zweigen der Physik Anwendung, und zur speziellen Charakterisierung haben sich viele spezielle Feldbegriffe durchgesetzt. Dabei kann dasselbe Feld unter mehrere der folgenden speziellen Feldbegriffe fallen.
Ein Kriterium zur Charakterisierung von Feldern ist die physikalische Natur der Feldgröße: Dichtefeld, Temperaturfeld, Geschwindigkeitsfeld, Gravitationsfeld, Elektrisches Feld, Magnetfeld, (Konservatives) Kraftfeld und Schallfeld.
Ein anderes Kriterium ist die mathematische Natur der Feldgröße: Skalarfelder haben Skalare als Funktionswerte, etwa die Massedichte oder die Temperatur. Ein wichtiges Skalarfeld ist das physikalische Potential. Vektorfelder haben Vektoren als Funktionswerte, etwa die Kraft oder die elektrische Feldstärke; Tensorfelder haben Tensoren als Funktionswerte, etwa die elastische Spannung; Spinorfelder haben Spinoren als Funktionswerte, etwa die Lösungen der Diracgleichung oder Weyl-Gleichung in der relativistischen Quantenmechanik. Für die Feldgröße mancher Vektorfelder ist der Name Feldstärke gebräuchlich.
Felder können zusätzlich nach ihrer zeitlichen (Un)veränderlichkeit charakterisiert werden: Statische Felder besitzen Funktionswerte, die zeitunabhängig sind, und sind damit beispielsweise Gegenstand der Statik, Elektrostatik, Magnetostatik, Hydrostatik oder Aerostatik. Stationäre Felder besitzen Funktionswerte, die zwar im Allgemeinen zeitabhängig sind, sich aber im gerade betrachteten Fall nicht zeitlich ändern. Beispiele sind hier das Magnetfeld um einen ruhenden, von einem konstanten Gleichstrom durchflossenen Leiter oder eine stationäre Strömung einer Flüssigkeit. Quasistationär nennt man Felder, deren Funktionswerte sich zwar mit der Zeit ändern, doch nur so wenig, dass diese Veränderung vernachlässigbar ist.
Felder können auch nach ihrer örtlichen (Un)veränderlichkeit eingeteilt werden. In einem homogenen Feld ist die Feldgröße an jedem Ort gleich, also ortsunabhängig. Ist dies nicht der Fall, heißt das Feld inhomogen.
Vektorfelder können nach dem Verlauf ihrer Feldlinien charakterisiert werden. Feldlinien können von bestimmten Punkten im Raum ausgehen und in anderen Punkten verschwinden (Quelle und Senke) – Felder dieser Art heißen ganz allgemein Quellenfelder. Beispiel hierfür sind das elektrostatische Feld einer positiven und negativen elektrischen Ladung oder das Gravitationsfeld. Feldlinien können aber auch als stets in sich geschlossene Schleifen auftreten – Felder dieser Art heißen ganz allgemein Wirbelfelder. Bekanntestes Beispiel hierfür ist das Magnetfeld. Das Vektorfeld, das sich aus dem Gradienten an jedem Ort eines Potenzialfeldes ergibt, heißt Gradientenfeld.
Zweidimensionale Skalarfelder oder zweidimensionale Schnitte von höherdimensionalen Skalarfeldern können mit Hilfe von Höhenlinien oder der Höhe entsprechend eingefärbten Punkten in einer Ebene dargestellt werden (siehe oberes nebenstehendes Bild).
Manche zweidimensionale Vektorfelder können besonders anschaulich mit Hilfe von Feldlinien dargestellt werden (siehe unteres nebenstehendes Bild). Die Tangente einer Feldlinie gibt die Richtung der Feldgröße (Vektor) an der jeweiligen Stelle an; der Abstand der Linien voneinander ist umgekehrt proportional dem Betrag der Feldgröße.