Version vom 4. Februar 2022, 09:27 Uhr von imported>Boehm
Die Soave-Redlich-Kwong-Zustandsgleichung[1] ist eine Zustandsgleichung für reale Gase und eine Weiterentwicklung der Redlich-Kwong-Zustandsgleichung.
Zustandsgleichung
Die Zustandsgleichung von Soave-Redlich-Kwong lautet
- $ p={\frac {RT}{V_{\mathrm {m} }-b}}-{\frac {a\alpha }{V_{\mathrm {m} }\left(V_{\mathrm {m} }+b\right)}} $
- $ a={\frac {0{,}42748\cdot R^{2}T_{\mathrm {c} }^{2}}{p_{\mathrm {c} }}} $
- $ b={\frac {0{,}08664\cdot RT_{\mathrm {c} }}{p_{\mathrm {c} }}} $
Die einzelnen Formelzeichen stehen für folgende Größen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_m
– molares Volumen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T
– Temperatur
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_c
– kritische Temperatur
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p
– Druck
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_c
– kritischer Druck
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R
– universelle Gaskonstante
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a
– Kohäsionsdruck
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b
– Kovolumen
Mit dieser Gleichung wurde 1972 im Vergleich zur Van-der-Waals-Gleichung eine wesentliche Verbesserung erreicht, indem ein zusätzlicher Korrespondenzparameter eingeführt wird und damit Feinheiten im Molekülaufbau, etwa eine Abweichung von der Kugelform, berücksichtigt werden. Dazu ersetzte Giorgio Soave den Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{a}{\sqrt{T}}
der Redlich-Kwong-Gleichung durch die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha (T_r, \omega )
:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = \left(1 + \left(0{,}48 + 1{,}574\,\omega - 0{,}176\,\omega^2\right) \left(1-\sqrt{T_\mathrm{r}}\right)\right)^2
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_r
– reduzierte Temperatur
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega
– azentrischer Faktor
Eine Präzisierung der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha
-Funktion lautet[2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = \left(1 + \left( 0{,}48508 + 1{,}55171\,\omega - 0{,}15613\,\omega^2\right) \left(1-\sqrt{T_\mathrm{r}}\right)\right)^2
Für Wasserstoff gilt auch [3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha = 1{,}202 \exp\left( -0{,}30288\,T_\mathrm{r} \right)
Dimensionslose Form
Mit dem Kompressibilitätsfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z = \frac{p V_\mathrm m}{R T}
und den dimensionslosen Parametern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A = \frac{a p}{(R T)^2}
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B = \frac{b p}{R T}
folgt die Formulierung der Soave-Redlich-Kwong Zustandsgleichung als kubisches Polynom
- $ 0=Z^{3}-Z^{2}+\left(A-B-B^{2}\right)Z-AB $
das z. B. mit den Cardanischen Formeln analytisch gelöst werden kann.
Parameter
Aus den Bedingungen am kritischen Punkt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm{d}p}{\mathrm{d}V_\mathrm m} = \frac{\mathrm{d}^2p}{\mathrm{d}V_\mathrm m^2} = 0
folgen die beiden Parameter der Zustandsgleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a = \Omega_a \,\frac{R^2 T_\mathrm{c}^2}{p_\mathrm{c}} \,, \qquad b = \Omega_b \,\frac{R T_\mathrm{c}}{p_\mathrm{c}}
mit den beiden Konstanten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Omega_a = \frac{1}{9\left(\sqrt[3]{2} - 1\right)} \approx 0{,}4274802
[4]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Omega_b = \frac{\sqrt[3]{2} - 1}{3} \approx 0{,}08664035
Siehe auch
- PSRK-Zustandsgleichung (predictive Soave-Redlich-Kwong equation of state): Ein Verfahren zur Abschätzung von Gemischeigenschaften. Eine von Fischer, Holderbaum und Gmehling entwickelte Gleichung. Sie stellt eine Kombination von SRK und Unifac dar.
Einzelnachweise
- ↑ Giorgio Soave: Equilibrium constants from a modified Redlich-Kwong equation of state. In: Chemical Engineering Science. Band 27, Nr. 6, Juni 1972, S. 1197–1203, doi:10.1016/0009-2509(72)80096-4.
- ↑ M. S. Graboski, T. E. Daubert: A Modified Soave Equation of State for Phase Equilibrium Calculations. 1. Hydrocarbon Systems. In: Ind. Eng. Chem. Process Des. Dev. Band 17, Nr. 4, März 1978, S. 443–448, doi:10.1021/i260068a009.
- ↑ M. S. Graboski, T. E. Daubert: A Modified Soave Equation of State for Phase Equilibrium Calculations. 3. Systems Containing Hydrogen. In: Ind. Eng. Chem. Process Des. Dev. Band 18, Nr. 2, Oktober 1978, S. 300–306, doi:10.1021/i260070a022.
- ↑ Jean-Noël Jaubert, Romain Privat: Relationship between the binary interaction parameters (kij) of the Peng–Robinson and those of the Soave–Redlich–Kwong equations of state: Application to the definition of the PR2SRK model. In: Fluid Phase Equilibria. 295, 2010, S. 26–37. doi:10.1016/j.fluid.2010.03.037.