Kirkwood-Buff-Theorie

Kirkwood-Buff-Theorie

Version vom 14. Dezember 2020, 18:05 Uhr von imported>Elrond (→‎Einleitung: Adjektiv)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Kirkwood-Buff-Theorie (KB-Theorie) ist eine Theorie der Lösung von Molekülen. Sie verbindet makroskopische Stoffeigenschaften mit molekularen.

Prinzip

Die Kirkwood-Buff-Theorie verwendet Methoden der statistischen Mechanik zur Berechnung thermodynamischer Mengen aus Paarverteilungsfunktionen zwischen allen Molekülen in einer Mehrkomponentenlösung.[1] Die KB-Theorie kann zur Validierung molekularer Modellierungen und zur Aufklärung des Mechanismus verschiedener physikalischer Vorgänge verwendet werden.[2][3][4] Weiterhin wird die KB-Theorie bei verschiedenen biologischen Fragestellungen angewendet.[5]

Zur KB-Theorie wurde eine Umkehrung entwickelt, die reverse KB-Theorie, bei der molekulare Eigenschaften aus thermodynamischen Messungen bestimmt werden können.[6][7]

Paarverteilungsfunktion

Die Paarverteilungsfunktion beschreibt eine örtlich begrenzte Ordnung in einer Mischung. Die Paarverteilungsfunktion der Bestandteile Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \boldsymbol{r}_i bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \boldsymbol{r}_j ist folgendermaßen definiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g_{ij}(\boldsymbol{R})=\frac{\rho_{ij}(\boldsymbol{R})}{\rho_{ij}^\text{bulk}}

mit der lokalen Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_{ij} (\boldsymbol{R}) der Komponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j im Vergleich zur Komponente $ i $, der Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho_{ij}^\text{bulk} der Komponente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j und dem Radiusvektor zwischen Molekülen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \boldsymbol{R}= |\boldsymbol{r}_i-\boldsymbol{r}_j| . Daraus folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g_{ij} (\boldsymbol{R}) = g_{ji}(\boldsymbol{R})

Unter der Annahme einer kugelförmigen Symmetrie vereinfacht sich die Funktion zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g_{ij}(r)=\frac{\rho_{ij}(r)}{\rho_{ij}^\text{bulk}}

mit dem Abstand $ r=|{\boldsymbol {R}}| $ zwischen zwei Molekülen.

Die Freie Energie wird gelegentlich zur weiteren Beschreibung der Wechselbeziehungen der Moleküle bestimmt. Das Potential mittlerer Kraft zwischen zwei Komponenten steht mit der Paarverteilungsfunktion in folgender Beziehung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): PMF_{ij}(r)=-kT\ln(g_{ij})

mit PMF ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) als Maß der effektiven Wechselbeziehung zwischen zwei Komponenten in einer Lösung.

Kirkwood-Buff-Integrale

Die Kirkwood-Buff-Integrale (KBI) zwischen den Komponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j ist als das Raumintegral über die Paarverteilungsfunktion definiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G_{ij}=\int\limits_V [g_{ij}(\boldsymbol{R})-1]\,d\boldsymbol{R}

Im Falle kugelförmiger Symmetrie vereinfacht sich die Gleichung zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G_{ij}=4\pi\int_{r=0}^\infty [g_{ij} (r)-1]r^2 \, dr

Thermodynamische Relationen

Zweikomponentensystem

Verschiedene Beziehungen ($ G_{11} $, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G_{22} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G_{12} ) können für ein System mit zwei Komponenten hergeleitet werden.

Das partielle molare Volumen der Komponente 1 ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar\nu_1=\frac{1+c_2 (G_{22}-G_{12})}{c_1+c_2+c_1c_2 (G_{11}+G_{22}-2G_{12})}

mit der molaren Konzentration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c_1\bar\nu_1+c_2\bar\nu_2=1

Die Kompressibilität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa kT=\frac{1+c_1 G_{11}+c_2 G_{22}+c_1 c_2 (G_{11}G_{22}-G_{12})^2}{c_1+c_2+c_1 c_2 (G_{11}+G_{22}-2 G_{12})}

mit $ k $ als die Boltzmann-Konstante und der Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T .

Der osmotische Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Pi in Bezug zur Konzentration der Komponente 2:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left(\frac {\partial \Pi}{\partial c_2}\right)_{T,\mu_1}=\frac{kT}{1+c_2 G_{22}}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu_1 als chemisches Potential der Komponente 1.

Die chemischen Potentiale in Bezug auf Konzentrationen, bei konstanter Temperatur (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T ) und konstantem Druck (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P ) sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{kT} \left(\frac {\partial \mu_1}{\partial c_1}\right)_{T,P}=\frac{1}{c_1}+\frac{G_{12}-G_{11}}{1+c_1 (G_{11}-G_{12})}
$ {\frac {1}{kT}}\left({\frac {\partial \mu _{2}}{\partial c_{2}}}\right)_{T,P}={\frac {1}{c_{2}}}+{\frac {G_{12}-G_{22}}{1+c_{2}(G_{22}-G_{12})}} $

oder alternativ, in Bezug zum Stoffmengenanteil:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{kT} \left(\frac {\partial \mu_2}{\partial \chi_2}\right)_{T,P}=\frac{1}{\chi_2}+\frac{c_1 (2G_{12}-G_{11}-G_{22})}{1+c_1\chi_2 (G_{11}+G_{22}-2G_{12})}


Koeffizient bevorzugter Wechselwirkungen

Die relative Neigung der Lösung bzw. Interaktion eines Stoffes in einem Lösungsmittel wird durch den Bindungskoeffizienten (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma beschrieben.[8] In einer wässrigen Lösung aus einem Lösungsmittel und zwei gelösten Komponenten (Solut und Cosolut) steht der effektive {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) des Wassers mit dem {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_W in Beziehung, der im Falle der Löslichkeit einen positiven Wert annimmt. Nach der Kirkwood-Buff-Theorie ist der preferential hydration coefficient bei niedrigen Konzentrationen des Cosoluts:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_W=M_W\left(G_{WS}-G_{CS}\right)

mit der Molarität des Wassers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_W und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W, S und $ C $ als Wasser, Solut und Cosolut.

Im allgemeinsten Fall ist die bevorzugte Hydratation eine Funktion des KBI des Soluts mit sowohl dem Lösungsmittel als auch dem Cosolut. Unter einigen Annahmen[9] und in verschiedenen Anwendungsbeispielen[10] vereinfacht sich die Gleichung zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_W=-M_{W}G_{CS}

Dann ist die einzig relevante Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G_{CS} .

Geschichte

Die Theorie wurde 1951 von John G. Kirkwood und Frank P. Buff entwickelt.[1] Die reverse KB-Theorie wurde 1977 von Arieh Ben-Naim beschrieben.[6]

Literatur

  • A. Ben-Naim: Molecular Theory of Water and Aqueous Solutions, Part I: Understanding Water. World Scientific, 2009, ISBN 978-981-283-760-8, S. 629.
  • E. Ruckenstein, IL. Shulgin: Thermodynamics of Solutions: From Gases to Pharmaceutics to Proteins. Springer, 2009, ISBN 978-1-4419-0439-3, S. 346.
  • W. Linert: Highlights in Solute–Solvent Interactions. Springer, 2002, ISBN 978-3-7091-6151-7, S. 222.

Einzelnachweise

  1. 1,0 1,1 J.G. Kirkwood, F. P. Buff: The Statistical Mechanical Theory of Solutions. I. In: J. Chem. Phys. 19. Jahrgang, 1951, S. 774–777, doi:10.1063/1.1748352, bibcode:1951JChPh..19..774K.
  2. KE Newman: Kirkwood–Buff solution theory: derivation and applications. In: Chem. Soc. Rev. 23. Jahrgang, 1994, S. 31–40, doi:10.1039/CS9942300031.
  3. D. Harries, J. Rösgen: A practical guide on how osmolytes modulate macromolecular properties.. In:Biophysical Tools for Biologists: Vol 1 in Vitro Techniques. Elsevier Academic Press Inc, 2008, S. 679–735, doi:10.1016/S0091-679X(07)84022-2.
  4. S. Weerasinghe, G. M. Baeee, M. Kang, N. Bentenitis, Smith, P.E.: Developing Force Fields from the Microscopic Structure of Solutions: The Kirkwood–Buff Approach.. In:Modeling Solvent Environments: Applications to Simulations of Biomolecules. Wiley-VCH, 2010, S. 55–76, doi:10.1002/9783527629251.ch3.
  5. Veronica Pierce, Myungshim Kang, Mahalaxmi Aburi, Samantha Weerasinghe, Paul E. Smith: Recent Applications of Kirkwood–Buff Theory to Biological Systems. In: Cell Biochem Biophys. 50. Jahrgang, 2008, S. 1–22, doi:10.1007/s12013-007-9005-0.
  6. 6,0 6,1 A Ben-Naim: Inversion of the Kirkwood–Buff theory of solutions: Application to the water-ethanol system. In: J. Chem. Phys. 67. Jahrgang, 1977, S. 4884–4890, doi:10.1063/1.434669, bibcode:1977JChPh..67.4884B.
  7. P.E. Smith: On the Kirkwood–Buff inversion procedure. In: J. Chem. Phys. 129. Jahrgang, 2008, S. 124509, doi:10.1063/1.2982171, bibcode:2008JChPh.129l4509S.
  8. V. A. Parsegian: Protein-water interactions. In: Int. Rev. Cytol. 215. Jahrgang, 2002, S. 1–31, doi:10.1016/S0074-7696(02)15003-0.
  9. L. Sapir, D. Harries: Is the depletion force entropic? Molecular crowding beyond steric interactions. In: Curr. Opin. Coll. Int. Sci. 20. Jahrgang, 2015, S. 3–10, doi:10.1016/j.cocis.2014.12.003.
  10. S. Shimizu, N. Matubayasi: Preferential Solvation: Dividing Surface vs Excess Numbers. In: J. Phys. Chem. B. 118. Jahrgang, 2014, S. 3922–3930, doi:10.1021/jp410567c.