Hamiltonoperator

Hamiltonoperator

Version vom 30. Juni 2019, 18:20 Uhr von imported>Aka (zu großen Zeilenabstand entfernt, Kleinkram)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Hamiltonoperator $ {\hat {H}} $ (auch Hamiltonian) ist in der Quantenmechanik ein Operator, der (mögliche) Energiemesswerte und die Zeitentwicklung angibt. Er ist daher der Energieoperator. Er liefert beispielsweise die Energieniveaus des Elektrons im Wasserstoffatom. Er ist nach William Rowan Hamilton benannt. Auf ihn geht die hamiltonsche Formulierung der klassischen Mechanik zurück, in der die Hamilton-Funktion die Zeitentwicklung und die Energie bestimmt.

Zeitentwicklung und Energie

In der Quantenmechanik wird jeder Zustand des betrachteten physikalischen Systems durch einen zugehörigen Vektor $ \psi $ im Hilbertraum angegeben. Seine Zeitentwicklung wird nach der Schrödingergleichung durch den Hamiltonoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat H bestimmt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i \, \hbar {\partial \over \partial t} \, \psi (t) = \hat H \, \psi (t)

mit

  • der imaginären Einheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i
  • der reduzierten Planckschen Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar = \frac{h}{2\pi}.

Man erhält den Hamiltonoperator in vielen Fällen aus der Hamiltonfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal H(t,x,p) des entsprechenden klassischen Systems (mit der generalisierten Koordinate x und dem kanonischen Impuls p) durch kanonische Quantisierung. Dazu wird der algebraische Ausdruck für die Hamilton-Funktion als Funktion von Operatoren gelesen (Ortsoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat x und Impulsoperator $ {\hat {p}} $), die den kanonischen Vertauschungsrelationen genügen.

Dies ist allerdings nicht eindeutig, da die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x\,p -p\,x den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 hat, die Operatorfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat x\, \hat p - \hat p\, \hat x aber den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm i \hbar. Zudem ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x \, p reell, aber $ {\hat {x}}\,{\hat {p}} $ ist hermitesch. Außerdem gibt es quantenmechanische Größen wie den Spin, die in der klassischen Physik nicht auftreten. Wie sie sich auf die Zeitentwicklung auswirken, folgt nicht aus Analogien mit der klassischen Physik, sondern muss aus den physikalischen Befunden erschlossen werden.

Die Eigenwertgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat H \, \varphi_E = E \, \varphi_E

bestimmt die Eigenvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_E des Hamiltonoperators; sie sind bei zeitunabhängigem Hamiltonoperator stationär, d. h. in jeder beobachtbaren Eigenschaft zeitunabhängig. Die Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E sind die zugehörigen Energien.

Da der Hamiltonoperator hermitesch (genauer wesentlich selbstadjungiert) ist, besagt der Spektralsatz, dass die Energien reell sind und dass die Eigenvektoren eine Orthonormalbasis des Hilbertraums bilden. Je nach System kann das Energiespektrum diskret oder kontinuierlich sein. Manche Systeme, z. B. das Wasserstoffatom oder ein Teilchen im Potentialtopf, haben ein nach unten beschränktes, diskretes Spektrum und darüber ein Kontinuum möglicher Energien.

Der Hamiltonoperator erzeugt die unitäre Zeitentwicklung. Falls für alle Zeiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tau' zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_0 und $ t $ der Hamiltonoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H(\tau) mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H(\tau') kommutiert, so bewirkt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat U(t,t_0) = \exp\left(-\frac{\mathrm i}{\hbar}\int_{t_0}^t\hat H(\tau)\,\mathrm d\tau\right)

die unitäre Abbildung jedes anfänglichen Zustandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(t_0) auf den zugehörigen Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(t) = U(t,t_0) \, \psi(t_0) zur Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t.

Falls der Hamiltonoperator nicht von der Zeit abhängt ($ {\hat {H}}\neq f(t) $), vereinfacht sich dies zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat U(t,t_0) = \exp \left(-\frac{\mathrm i}{\hbar} \hat H (t - t_0) \right).

Operatoren, die mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat H vertauschen, sind bei zeitunabhängigem Hamiltonoperator Erhaltungsgrößen des Systems, insbesondere die Energie.

Für die Energie gilt auch eine Energie-Zeit-Unschärferelation, nur muss man in der Quantenmechanik bei deren Ableitung anders vorgehen als zum Beispiel bei der Ort-Impuls-Unschärferelation.

Beispiele

Quantenmechanisches Teilchen im Potential

Aus der Hamiltonfunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{H} \left( {\mathbf{x}},{\mathbf{p}} \right) = \frac{{\mathbf{p}}^2}{2 \, m}+V({\mathbf{x}})

für ein nichtrelativistisches, klassisches Teilchen der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m , das sich im Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\mathbf x) bewegt, kann ein Hamiltonoperator abgelesen werden. Dazu werden die Ausdrücke für den Impuls und das Potential durch die entsprechenden Operatoren ersetzt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{H}(\hat{\mathbf{x}}, \hat{\mathbf{p}}) = \frac{\hat{\mathbf{p}}^2}{2\,m}+V(\hat{\mathbf{x}}).

In der Ortsdarstellung wirkt der Impulsoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{\mathbf{p}} als Ableitung $ -\mathrm {i} \hbar {\tfrac {\partial }{\partial \mathbf {x} }} $ und der Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\hat{\mathbf{x}}) als Multiplikation mit der Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\mathbf{x}). Die Anwendung dieses Hamiltonoperators eines Punktteilchens der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m im Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\mathbf{x}) auf die Ortswellenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi des Teilchens wirkt sich demnach aus durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow \hat{H}\Psi(\mathbf x) = \Bigl(-\frac{\hbar^2}{2 \, m}\Delta+V(\mathbf{x})\Bigr)\Psi(\mathbf x).

Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta = \tfrac{\partial^2}{\partial x^2} + \tfrac{\partial^2}{\partial y^2} + \tfrac{\partial^2}{\partial z^2} der Laplace-Operator.

Die Schrödingergleichung lautet somit

$ \mathrm {i} \,\hbar \,{\frac {\partial }{\partial t}}\Psi (t,\mathbf {x} )=-{\frac {\hbar ^{2}}{2\,m}}\Delta \Psi (t,\mathbf {x} )+V(\mathbf {x} )\cdot \Psi (t,\mathbf {x} ). $

Diese Schrödingergleichung einer Punktmasse im Potential ist die Grundlage zur Erklärung des Tunneleffekts. Sie liefert bei Einsetzen des Coulombpotentials (als Potential für die Wechselwirkung zwischen einem Elektron und einem Proton) die Spektrallinien des Wasserstoff-Atoms. Durch Einsetzen entsprechender Potentiale können auch die Spektrallinien anderer leichter Atome berechnet werden.

Eindimensionaler harmonischer Oszillator

Analog erhält man für den quantenmechanischen harmonischen Oszillator, der sich nur längs einer Linie bewegen kann, den Hamiltonoperator

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat H = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{1}{2}m \, \omega^2 \, x^2.

Die Energien lassen sich algebraisch bestimmen. Man erhält

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_n = E_0 + n \, \hbar \omega, \quad n \in \{0,1,2,\dots\}.

Es handelt sich dabei um dieselben Energien wie die eines Grundzustandes mit Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_0 , dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n -fach ein Quant der Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar \, \omega hinzugefügt wurde.

Spin im Magnetfeld

Zum Spin Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf S eines Elektrons, das an ein Atom gebunden ist und sich in einem ungepaarten Zustand (allein in der Elektronenwolke) im Magnetfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf B befindet, gehört der Hamiltonoperator

$ {\hat {H}}=-\gamma \mathbf {S} \cdot \mathbf {B} . $

Dabei ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma das gyromagnetische Verhältnis des Elektrons
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf S der Spinoperator.

Da der Spin in Richtung des Magnetfeldes nur die Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar/2 oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): - \hbar/2 annehmen kann (Spinpolarisation), sind die möglichen Energien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \pm \frac{\gamma}{2}\,|\mathbf B| . Im inhomogenen Magnetfeld des Stern-Gerlach-Versuchs spaltet daher ein Teilchenstrahl aus Silberatomen in zwei Teilstrahlen auf.

Geladenes, spinloses Teilchen im elektromagnetischen Feld

Den Hamiltonoperator eines Teilchen mit Ladung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q in einem äußeren elektromagnetischen Feld erhält man durch minimale Substitution

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{H} = \frac{1}{2m}\bigl(\hat{\mathbf{p}} - q \mathbf{A}(t,\hat{\mathbf{x}})\bigr)^2 + q \, \varphi(t,\hat{\mathbf{x}}).

Hier bezeichnet

  • $ \mathbf {A} (t,{\hat {\mathbf {x} }}) $ das Vektorpotential
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi(t,\hat{\mathbf{x}}) das Skalarpotential.

Beim Ausmultiplizieren der Klammer ist zu beachten, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{\bf p} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\bf A}(\hat{\bf x}) wegen der Ortsabhängigkeit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bf A im Allgemeinen nicht kommutieren. Dies ist nur in der Coulomb-Eichung der Fall.

Siehe auch

Literatur

  • Peter Rennert, Angelika Chassé und Wolfram Hergert: Einführung in die Quantenphysik. Experimentelle und theoretische Grundlagen mit Aufgaben, Lösungen und Mathematica-Notebooks. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-00769-0.