Version vom 3. August 2021, 10:46 Uhr von imported>Aka
In der Plasmaphysik ist die Abschirmlänge nach Peter Debye Debye-Länge oder Debye-Radius genannt,[1] die charakteristische Länge, auf welcher das elektrische Potential einer lokalen Überschussladung auf das -fache abfällt (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e
: Eulersche Zahl).
In der näheren Umgebung einer Ladung befinden sich durch die elektrostatische Abstoßung bzw. Anziehung im statistischen Mittel weniger Ladungsträger gleicher Polarität als solche entgegengesetzter Polarität. Dadurch wird die Ladung nach außen hin abgeschirmt (siehe Abbildung). Durch die thermische Bewegung der Teilchen wird die Ordnung gestört und damit die abschirmende Wirkung geschwächt. Die sich ergebende Abschirmlänge ist eine zentrale Größe in der Debye-Hückel-Theorie. Ihr Wert hängt bei gegebenen Bedingungen von der Symmetrie des Problems ab: von Abschirmlänge spricht man bei einer ebenen Ladungsverteilung, von Debye-Radius bei Kugelsymmetrie.
Das Prinzip der Abschirmung einer Ladung durch frei bewegliche Ladungsträger ist anwendbar auf Plasmen, Elektrolyte und Halbleiter.
Debye-Länge in Plasmen
Im Gleichgewicht gilt:
Darin ist
In einem Plasma geringer Teilchendichte sind in Gegenwart elektrischer Felder die Elektronen oft viel heißer als die Ionen und deshalb gleichmäßiger verteilt. Dann gilt:
Umgekehrt ist in einem dichten Plasma oder bei schnell veränderlichen Feldern die Beweglichkeit der Ionen zu gering, um ihre Dichte dem Feld anzupassen. Dann kann der Ionen-Term vernachlässigt werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda_\mathrm{D} \approx \lambda_\mathrm{De} = \sqrt{\frac{\varepsilon_0 \, k_\mathrm{B} T_e}{n_e \, e^2}}
.
Debye-Länge in Elektrolyten
In Elektrolyten hängt die Debye-Länge von der Teilchenzahldichte und Ladungszahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_i
aller beteiligten Ionen ab.[2] Für verdünnte Elektrolyte gilt:[3]
- .
Es ist es üblich die Teilchenzahldichte durch die Ionenstärke I auszudrücken. Damit gilt:
- ,
für Ionenstärke in mol pro Liter. Hier sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varepsilon_\mathrm{r}
die relative Permittivität des Lösungsmittels und die Avogadro-Konstante.
Für wässrige Lösungen (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varepsilon_\mathrm{r}=80
) eines 1:1-Elektrolyten wie etwa Kochsalz ergibt sich bei Raumtemperatur (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T=293
K) bei einer Konzentration von 0,1 mol/l eine Debye-Länge von 0,96 nm, bei 0,001 mol/l sind es 9,6 nm.
Abweichungen von der Debye-Länge ergeben sich aufgrund der in der Herleitung gemachten Idealisierungen (u. a.: nur elektrostatische Kräfte sind wirksam, keine Korrelationen zwischen den Ionen, Ionen sind Punktladungen), die nur für sehr niedrige Konzentrationen (unter 0,01 mol/l)[4] gut erfüllt sind.[3]
Debye-Länge in Halbleitern
Für einen n-Typ-Halbleiter gilt:
und für einen p-Typ-Halbleiter:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda_\mathrm{Dp} = \sqrt{\frac{\varepsilon \, U_T}{e \, p_0}}
Dabei ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varepsilon = \varepsilon_0 \, \varepsilon_\mathrm{r}
die Dielektrizitätskonstante des Halbleiters
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U_T= \frac{k_\mathrm{B} \, T}{e}
die Temperaturspannung
- bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_0\,
die Gleichgewichts-Ladungsträgerdichte des Halbleiters.
Einzelnachweise
- ↑ auch: Debye-Hückel-Länge, Debyescher Abschirmradius, vgl. Debye-Länge. In: Lexikon der Physik. Spektrum Akademischer Verlag, 1998 (spektrum.de).
- ↑ McQuarrie and Simon: Physical Chemistry: A Molecular Approach. 25.6. libretexts.org
- ↑ 3,0 3,1 Luis M. Varela, Manuel Garcı́a, Vı́ctor Mosquera: Exact mean-field theory of ionic solutions: non-Debye screening. In: Physics Reports. Band 382, Nr. 1–2, 2003, S. 1–111, doi:10.1016/S0370-1573(03)00210-2.
- ↑ Hermann Loring: Debye-Hückel-Theorie. In: techniklexikon.net. Abgerufen am 10. Juli 2021.