Ionenstärke

Die Ionenstärke (Formelzeichen $ I $, in der älteren Literatur auch µ) einer Lösung ist ein Maß für die elektrische Feldstärke aufgrund gelöster Ionen.[1][2] Die chemische Aktivität gelöster Ionen und die Leitfähigkeit von Elektrolyt-Lösungen stehen mit ihr im Zusammenhang.

Gemäß den Empfehlungen der IUPAC[3] kann die Ionenstärke sowohl über die Stoffmengenkonzentration als auch über die Molalität der gelösten Ionen definiert werden:

$ I_{c}={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot \sum _{i}c_{i}\cdot z_{i}^{2} $
$ I_{b}={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot \sum _{i}b_{i}\cdot z_{i}^{2} $

mit

  • $ c_{i} $: Stoffmengenkonzentration der Ionensorte $ i $ (in mol/l)
  • $ b_{i} $: Molalität der Ionensorte $ i $ (in mol/kg)
  • $ z_{i} $: Ladungszahl der Ionensorte $ i $.

Da die Ionenladung im Quadrat in die Ionenstärke eingeht, liefert ein zweifach geladenes Ion im Vergleich zu einem einwertigen Ion bei gleicher Konzentration den vierfachen Beitrag zur Ionenstärke.

Beispiele

Bei einfach geladenen Ionen ist die Ionenstärke bei vollständig dissoziierten Elektrolyten gleich der Salzkonzentration. Für eine Kochsalzlösung mit $ c $(NaCl) = 0,001 mol/l beträgt die Konzentration der beiden Ionensorten Na+ und Cl ebenfalls 0,001 mol/l. Die Ionenstärke ist wegen $ z $(Na+) = 1 und $ z $(Cl) = −1:

$ {\begin{aligned}I(\mathrm {NaCl} )&={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (z^{2}(\mathrm {Na^{+}} )\cdot c(\mathrm {Na^{+}} )+z^{2}(\mathrm {Cl^{-}} )\cdot c(\mathrm {Cl^{-}} ))\\&={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (1^{2}\cdot c(\mathrm {NaCl} )+(-1)^{2}\cdot c(\mathrm {NaCl} ))\\&=c(\mathrm {NaCl} )\\\Downarrow &\\I&={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (1^{2}\cdot 0{,}001~\mathrm {mol/l} +(-1)^{2}\cdot 0{,}001~\mathrm {mol/l} )\\&={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (0{,}001~\mathrm {mol/l} +0{,}001~\mathrm {mol/l} )\\&=0{,}001~\mathrm {mol/l} \end{aligned}} $

Bei einem 1:2-wertigen oder 2:1-wertigen Elektrolyten, beispielsweise bei Calciumchlorid, ist die Ionenstärke gleich der dreifachen Salzkonzentration. Beispielsweise gilt für Calciumchlorid mit den Ladungszahlen $ z $(Ca2+) = 2 und $ z $(Cl) = −1 sowie den Stöchiometrieverhältnissen $ c $(CaCl2) = $ c $(Ca2+) = $ \textstyle {\frac {c}{2}} $(Cl):

$ {\begin{aligned}I(\mathrm {CaCl_{2}} )&={\frac {1}{2}}\cdot (z^{2}(\mathrm {Ca^{2+}} )\cdot c(\mathrm {Ca^{2+}} )+z^{2}(\mathrm {Cl^{-}} )\cdot c(\mathrm {Cl^{-}} ))\\&={\frac {1}{2}}\cdot (2^{2}\cdot c(\mathrm {CaCl_{2}} )+(-1)^{2}\cdot 2\cdot c(\mathrm {CaCl_{2}} ))\\&={\frac {1}{2}}\cdot (6\cdot c(\mathrm {CaCl_{2}} ))\\&=3\cdot c(\mathrm {CaCl_{2}} )\end{aligned}} $

Bedeutung

Die Ionenstärke wurde bei der Entwicklung der Debye-Hückel-Theorie als praktikable Größe in die Elektrochemie eingeführt. Diese Theorie zeigt, dass die mittleren Aktivitätskoeffizienten $ \gamma $ in verdünnten Lösungen von der Wurzel der Ionenstärke abhängen, und liefert beispielsweise für verdünnte wässrige Lösungen bei 25 °C folgende Formel:

$ \lg \gamma =-A\cdot \left\vert z^{+}\cdot z^{-}\right\vert \cdot {\sqrt {I}} $

mit

$ A=0{,}5099\,\mathrm {dm^{\frac {3}{2}}\cdot mol^{-{\frac {1}{2}}}} . $

Literatur

  • Anwendung der Ionenstärke I in der Kohlrausch-Quadratwurzelgleichung zur Berechnung von Äquivalentleitfähigkeiten sowie Berechnung von Aktivitätskoeffizienten von Ionen in Salzlösungen; In: Kunze/Schwedt: Grundlagen der qualitativen und quantitativen Analyse, Thieme Verlag Stuttgart, 1996, S. 270 sowie 47, ISBN 3-13-585804-9

Einzelnachweise

  1. G. N. Lewis, M. Randall, J. Am. Chem. Soc., 43, 1921, 1112.
  2. S. Glasstone, An Introduction To Electrochemistry, 2007, 140.
  3. Pure Appl. Chem., 68(4), 1996, 957.

Die News der letzten Tage

20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.