Brillanz (Strahlung)

Brillanz (Strahlung)

Version vom 21. Juni 2020, 21:30 Uhr von imported>Bautsch (→‎Definition: Wikilinks)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die Brillanz beschreibt in der Optik und Lasertechnik die Bündelung eines Strahls von elektromagnetischer Strahlung.

Definition

Die Brillanz $ B $ ist definiert als die Anzahl $ \Delta N $ der Photonen pro Zeit $ t $, Fläche $ A $, Raumwinkel $ \Delta \Omega $ und innerhalb eines schmalen Wellenlängenbereichs:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B = \frac{\Delta N}{t \cdot A \cdot \Delta \Omega \cdot \frac{\Delta \lambda}{\lambda}}

Angegeben wird die spektrale Brillanz beispielsweise in der Einheit Schwinger (Sch; nach Julian Seymour Schwinger):[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 \text{Sch} = \frac{1 \rm Photon}{\rm s \cdot (mm)^2 \cdot (mrad)^2 \cdot 0{,}1\,\% \, \text{Bandbreite}} [1][2]

Die Brillanz ist gleich der spektralen Strahldichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L_{\Omega \lambda} geteilt durch die Energie pro Photon (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{E}{\Delta N} ):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B = \frac{L_{\Omega \lambda}}{E / \Delta N} = \frac{E}{t \cdot A \cdot \Delta \Omega \cdot \frac{\Delta \lambda}{\lambda}} \cdot \frac{\Delta N}{E}

Wie die Strahldichte ist die Brillanz bezogen auf ein Einheits-Wellenlängenintervall (oder ein Einheits-Frequenzintervall) als Maß für die spektrale Bandbreite. Dieser Bezug ist notwendig, weil die spektrale Brillanz wie folgt mit der Dispersion (der wellenlängen- und frequenzabhängigen Brechung) zusammenhängt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B = \frac{ \frac{\Delta N}{t} }{\Delta \Omega \cdot \frac{\Delta W}{W}} [3]

Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\Delta W}{W} die relative spektrale Bandbreite der Strahlung.

Bedeutung

Als Maß für die Qualität einer Strahlung ist die Brillanz besonders bei neuartigen Geräten zur Erzeugung von Synchrotronstrahlung relevant, z. B. beim Freie-Elektronen-Laser.

Gemäß dem Satz von Liouville lässt sich die Brillanz einer Quelle – anders als Intensität und Divergenznicht durch Optik verändern.

Die Brillanz beschreibt die Auswirkungen der räumlichen (Strahlungsquerschnitt und Raumwinkel) und der zeitlichen Kohärenz (Zeit- und Bandbreitenintervall) einer Strahlquelle. Die entsprechenden minimalen Produkte im Nenner (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A \cdot \Delta \Omega sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t \cdot \tfrac{\Delta \lambda}{\lambda} ) und damit die maximale Brillanz werden nicht durch die Heisenbergsche Unschärferelation vorgegeben, sondern sind eine Manifestation der Wellennatur (die Zeit wird in der klassischen Quantenmechanik nicht als nicht-kommutierender Operator definiert, vgl. Vollständiger Satz kommutierender Observablen). Fläche-Ortsfrequenz- (vgl. z. B. Van-Cittert-Zernike-Theorem) bzw. Zeit-Frequenz-Zusammenhang (vgl. z. B. Wiener-Chintschin-Theorem) – beschreibbar durch Integraltransformationen, z. B. Fouriertransformation.

Siehe auch

Einzelnachweise

  1. 1,0 1,1 Ingolf V. Hertel, Claus Peter Schulz: Atome, Moleküle und optische Physik. Atomphysik und Grundlagen der Spektroskopie. Springer, 2008, ISBN 978-3-540-30613-9, S. 424 (Definition der Brillanz in der Google-Buchsuche).
  2. Jens Falta, Thomas Möller: Forschung mit Synchrotronstrahlung: Eine Einführung in die Grundlagen und Anwendungen. Vieweg + Teubner, Wiesbaden 2010, ISBN 978-3-519-00357-1, S. 214 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Ludwig Bergmann, Heinz Niedrig, Clemens Schaefer (Hrsg.): Lehrbuch der Experimentalphysik: Optik : Wellen- und Teilchenoptik. Walter de Gruyter, 2004, ISBN 978-3-11-017081-8, S. 1000.