Der Gauß-Strahl (auch gaußsches Bündel) ist ein Konzept der paraxialen Optik zur Beschreibung der Lichtausbreitung, in dem sich Methoden der Strahlen- und der Wellenoptik verbinden. Im Querschnitt zeigt der Gauß-Strahl ein Profil gemäß einer Gauß-Kurve mit einer längs der Ausbreitungsachse variierenden Breite. Der Strahl verjüngt sich näherungsweise linear bis zum Erreichen der schmalsten Stelle, die als Fokus oder Taille bezeichnet wird, und wächst danach ebenso wieder an. Längs der Ausbreitungsachse zeigt die räumliche Intensität des Strahls ein Lorentzprofil, das Maximum liegt an der Stelle der Taille. Das elektromagnetische Feld des Gauß-Strahls ergibt sich aus den Maxwell-Gleichungen für konstante Frequenz ω, also aus der Helmholtz-Gleichung, nach paraxialer Näherung. Bei gegebener Ausbreitungsrichtung und Wellenlänge ist der Gauß-Strahl vollständig durch die Angabe des Orts und des Strahldurchmessers der Taille bestimmt.
Gauß-Strahlen beschreiben besonders gut die Lichtemission vieler Laser (siehe Beugungsmaßzahl), aber sie lassen sich auch in vielen anderen Situationen elektromagnetischer Strahlung einsetzen. Besonders interessant sind sie, weil sie einerseits den einfachen Rechenmethoden der Strahlenoptik gehorchen, andererseits aber auch Phasenbetrachtungen wie in der Wellenoptik erlauben.
Zur mathematischen Beschreibung eines Gauß-Strahls werden vorzugsweise Zylinderkoordinaten verwendet. Das Koordinatensystem wird so gewählt, dass die Ausbreitungsrichtung die z-Achse ist und die Strahltaille im Koordinatenursprung bei
Die Phasenfläche nähert sich in großem Abstand von der Taille der einer sphärischen Welle. Mit den Näherungen der unten angegebenen Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R(z)
und
Dieses Ergebnis wird nämlich ebenfalls nach Entwicklung des Quellabstands Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle \rho
im Phasenfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{e}^{-ik\rho}
einer Kugelwelle erhalten: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle \rho = \sqrt{r^2 + z^2} \approx z + r^2/(2z)
. – Jedoch zeigt die für den Gaußstrahl charakteristische Phasenreduktion von
Die zur Feldstärke gehörende Intensität ist:
Dabei sind
Wie bereits erwähnt hat der Gauß-Strahl ein transversales Profil gemäß einer Gauß-Kurve. Als Strahlradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): w
definiert man bei einem bestimmten Wert
mit der Rayleigh-Länge
Im Abstand der Rayleighlänge von der Strahltaille ist der Strahl auf
verbreitert. Die Rayleighlänge ist folglich der Abstand, bei dem sich die Strahlfläche in Bezug auf die kleinste Taille verdoppelt hat.
Der Abstand zwischen dem linken und rechten Punkt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |z| = z_R wird bi- oder konfokaler Parameter genannt:
Damit ist die Amplitude
Die Exponentialfunktionen mit imaginären Exponenten bestimmen die Phasenlage der Welle bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (r, z)
. Dabei bestimmt der Parameter
Direkt in der Strahltaille für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z=0 ist der Krümmungsradius unendlich und es liegen ebene Wellenfronten vor. Im Vergleich zur ebenen homogenen Welle ist jedoch das Intensitätsprofil senkrecht zur Ausbreitungsrichtung nicht konstant, weshalb der Strahl außerhalb der Taille divergiert und die Wellenfronten sich krümmen.
Betrachtet man den Verlauf von
Diese Beziehung führt zu dem Effekt, dass die Divergenz bei starker Fokussierung größer wird: Ist die Strahltaille schmal, verläuft der Strahl in großen Entfernungen stark auseinander. Man muss also einen Kompromiss aus Fokussierung und Reichweite finden.
Ein Term der Wellenphase des Gauß-Strahls wird Gouy-Phase genannt:
Der Phasenunterschied von
Beim vollständigen Durchgang des Gauß-Bündels durch seine Taille erfährt der paraxiale Strahl im Vergleich zur ebenen Welle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e^{-ikz} die entsprechend einer halben Wellenlänge geringere Phasenverschiebung im Fall der rotationssymmetrischen Grundmode.
Zuerst beobachtete Louis Georges Gouy experimentell im Jahre 1890 den zunächst überraschenden Effekt. Gauß-Bündel sind gemäß dem Fourier-Theorem eine Superposition von Neigungsmoden ebener Wellen. Die zur Bündelachse geneigten Spektralkomponenten propagieren – in z-Richtung gemessen – offenbar mit einer kleineren Phasenschiebung verglichen mit einer achsparallelen Welle. Das stetige Neigungsspektrum ergibt überlagert die beobachtete endliche Phasenreduktion.
Wenn ein Gaußstrahl auf parabolische[1] Linsen oder Spiegel fällt, ist der resultierende Strahl wieder ein Gaußstrahl. Damit lassen sich die Regeln der Matrizenoptik aus der geometrischen Optik vollständig übertragen. Definiert man den Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q(z) = z + iz_R , so wirkt die ABCD-Matrix eines optischen Elementes auf ihn gemäß
Komplizierte Kombinationen von optischen Elementen lassen sich zu einer Matrix zusammenfassen. Dies vereinfacht die Berechnung der Strahlprofile bei Strahlengängen, beispielsweise beim Berechnen von Resonanzen optischer Resonatoren.
Als Ausgangspunkt dienen die Maxwell-Gleichungen, aus denen eine Wellengleichung für elektromagnetische Wellen hergeleitet werden kann:
Ein allgemeiner Ansatz zur Lösung dieser Gleichung lautet
mit der Polarisation
mit der Kreiswellenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k = \omega / c . Eine Lösung dieser Gleichung wären bspw. die ebenen Wellen, diese haben aber das Problem, dass sie im gesamten Raum die gleiche Amplitude haben, während Laserstrahlen räumlich stark begrenzt sind. Es ist deswegen sinnvoll für die Feldstärke den Ansatz
zu wählen. Dieser gibt in Ausbreitungsrichtung eine harmonische, räumliche Oszillation vor sowie zwei (bisher noch) beliebige Formen in transversaler Ebene (senkrecht zur Ausbreitungsrichtung). Dieser Ansatz gilt weiterhin für den gesamten Raum, es wird deswegen noch eine weitere Annahme getroffen, die sogenannte Paraxialnäherung (engl. slowly varying envelope approximation) der Helmholtzgleichung, bei der gilt
mit der Bedeutung, dass sich das Profil des Strahls entlang der Ausbreitungsrichtung nur langsam ändert. Einsetzen des Ansatzes in die Helmholtzgleichung, Ausführen der Ableitung so weit wie möglich, Anwenden der Näherung (Terme mit mehr als einer z-Ableitung gleich null setzen) führt zu der Differentialgleichung
die in zwei unabhängige Gleichungen separiert werden kann:
Lösungen dieser Gleichungen lauten
wobei