Leistungssatz

Leistungssatz

Version vom 28. Februar 2022, 15:20 Uhr von imported>Blaues-Monsterle (→‎Die Leistung eines Momentes: nur wenn der Krempel senkrecht aufeinander steht)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Leistungssatz ist eine Gleichung, die in der Physik Anwendung findet.

Der Leistungssatz der Mechanik

Der Leistungssatz der Mechanik ist eine Verallgemeinerung des Energiesatzes. Er sagt aus, dass die Summe aller an einem System angreifenden Leistungen zu jedem Zeitpunkt gleich der zeitlichen Änderung der kinetischen Energie des Systems ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d}{dt}E_{kin} = \sum{P_i} .

Die an einem System angreifenden Leistungen setzen sich dabei stets zusammen aus konservativen und nicht-konservativen Leistungen:

$ {\frac {d}{dt}}E_{kin}=\sum {P_{i,K}}+\sum {P_{i,NK}} $.

Nicht-konservative Leistungen sind beispielsweise die Leistungen von Reib- oder Dämpferkräften, von denen Energie dissipiert wird.

Spezialfall nur konservativer Leistungen

Ist die Summe der nicht-konservativen Leistungen identisch null, d. h., wirken nur konservative Leistungen an einem System, dann geht der Leistungssatz in den Energiesatz über. Man erhält nämlich jetzt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d}{dt}E_{kin} = \sum{P_{i,K}} + 0

und aufgrund der Definition der (zeitlichen Änderung der) potentiellen Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d}{dt}E_{pot} = -\sum{P_{i,K}} folgt nun direkt der Energiesatz der Mechanik

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d}{dt}E_{kin} + \frac{d}{dt}E_{pot} = 0

und nach Integration nach der Zeit die bekannte Schreibweise

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \int\left(\frac{d}{dt}E_{kin}\right)dt + \int\left(\frac{d}{dt}E_{pot}\right) dt = \int 0dt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Rightarrow E_{kin} + E_{pot} = \mathrm{const}.

Die Leistung einer Kraft

Die Leistung einer (vektoriellen) Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{F} ist wie folgt definiert:

$ P_{F}={\vec {F}}\cdot {\vec {v}}_{F} $

mit der Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{v}_F des Kraftangriffspunktes. Man merke sich also: "Leistung ist Kraft mal Geschwindigkeit".

Wenn die Kraft exakt in Richtung der Geschwindigkeit ihres Angriffspunktes wirkt, vereinfacht sich das Skalarprodukt der beiden Vektoren zu dem Produkt der beiden skalaren Größen (Betrag der Kraft mal Betrag der Geschwindigkeit). Dies zu erkennen vereinfacht viele Rechnungen erheblich, da man sich so die umständliche Handhabung von Vektorkomponenten sparen kann.

Die Leistung eines Momentes

Die Leistung eines (vektoriellen) Momentes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{M} ergibt sich als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_M = \vec{M}\cdot\vec{\omega}

mit der Winkelgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{\omega} des Momentenangriffspunktes. Dies lässt sich zurückführen auf die Leistung einer Kraft, wenn man sich folgendes vor Augen hält: Da man ein Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec M zerlegen kann in ein Produkt aus Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec F und Hebelarm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec r , $ {\vec {M}}={\vec {r}}\times {\vec {F}} $, und gleichzeitig die Geschwindigkeit eines Punktes auf einem rotierenden Körper gleich ist der Winkelgeschwindigkeit der Drehung des Körpers multipliziert mit dem Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r vom Drehzentrum, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec v = \vec \omega \times \vec r , folgt die Behauptung für die Leistung eines Momentes. Auch hier gilt also wieder, nur in anderer Darstellung: "Leistung ist Kraft mal Geschwindigkeit".

Bewegungsgleichung und Gültigkeitsbereich

Nach dem Freischneiden des Systems, dem Berechnen aller unbekannten Kräfte und Momente sowie der Geschwindigkeiten der jeweiligen Kraftangriffspunkte, lässt sich aus dem Leistungssatz die Bewegungsgleichung für einen unbekannten Freiheitsgrad formen. Dabei ist es unerheblich, ob es sich bei dem Freiheitsgrad um einen Winkel oder eine Koordinate handelt, er muss nur in dem Ausdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{d}{dt}E_{kin} auftauchen. Dazu summiert man die kinetischen Einzelenergien des Systems, bestehend aus translatorischen und rotatorischen Bewegungen, in Abhängigkeit von dem einen Freiheitsgrad auf und leitet den erhaltenen Term nach der Zeit ab. Wichtig ist dabei, dass das System nur genau einen Freiheitsgrad haben darf, wenn man es mit dem Leistungssatz behandeln will. Ganz äquivalent zum Energiesatz merke man sich auch beim Leistungssatz, dass man ein System mit mehr als einem Freiheitsgrad nicht mehr auf diese Weise behandeln kann, da dann nicht eindeutig festgelegt wäre, wie sich die Energien auf die einzelnen Freiheitsgrade verteilen. Bei mehr als einem Freiheitsgrad wählt man den Lagrange-Formalismus zum Aufstellen der Bewegungsgleichungen.