Der Lagrange-Formalismus ist in der Physik eine 1788 von Joseph-Louis Lagrange eingeführte Formulierung der klassischen Mechanik, in der die Dynamik eines Systems durch eine einzige skalare Funktion, die Lagrange-Funktion, beschrieben wird. Der Formalismus ist (im Gegensatz zu der newtonschen Mechanik, die a priori nur in Inertialsystemen gilt) auch in beschleunigten Bezugssystemen gültig. Der Lagrange-Formalismus ist invariant gegen Koordinatentransformationen.[1] Aus der Lagrange-Funktion lassen sich die Bewegungsgleichungen mit den Euler-Lagrange-Gleichungen der Variationsrechnung aus dem Prinzip der kleinsten Wirkung bestimmen. Diese Betrachtungsweise vereinfacht viele physikalische Probleme, da sich, im Gegensatz zu der newtonschen Formulierung der Bewegungsgesetze, im Lagrange-Formalismus Zwangsbedingungen relativ einfach durch das explizite Ausrechnen der Zwangskräfte oder die geeignete Wahl generalisierter Koordinaten berücksichtigen lassen. Aus diesem Grund wird der Lagrange-Formalismus verbreitet bei Mehrkörpersystemen (MKS) eingesetzt. Er lässt sich auch auf den relativistischen Fall übertragen und ist auch in der relativistischen Quantenfeldtheorie zur Formulierung von Modellen von Elementarteilchen und ihrer Wechselwirkungen weit verbreitet.
Für Systeme mit einem generalisierten Potential und holonomen Zwangsbedingungen lautet die Lagrange-Funktion
wobei
Dabei sind
Mit den Lagrange-Gleichungen erster Art lassen sich die Zwangskräfte berechnen. Sie sind äquivalent zu den Gleichungen, die sich aus dem D’Alembertschen Prinzip ergeben. Wir betrachten
Die auf ein Teilchen
Wenn man annimmt, dass sich die äußeren Kräfte aus einem Potential ableiten lassen, kann man die Bewegungsgleichung schreiben (Lagrange-Gleichung 1. Art):[2]
Die
Bemerkung: Hier wurden nur holonome Zwangsbedingungen behandelt. Der Formalismus lässt sich aber auch auf Zwangsbedingungen der Form
Im Fall von holonomen Zwangsbedingungen kann man neue Koordinaten
und Potentialkräften
(die auch durch generalisierte Koordinaten ausgedrückt sind und dann als generalisierte Kräfte bezeichnet werden – sie haben nicht unbedingt die Dimension einer Kraft) lassen sich die Bewegungsgleichungen auch schreiben
oder mit der Lagrange-Funktion
Treten wie in diesem Fall nur aus einem Potential ableitbare Kräfte (Potentialkräfte) auf, spricht man von konservativen Kräften.
Bemerkung: Manchmal lassen sich die generalisierten Kräfte durch ein geschwindigkeitsabhängiges generalisiertes Potential
Auch dann ergeben sich die Bewegungsgleichungen
mit der Lagrange-Funktion
Das System ist dann aber nicht mehr im üblichen Sinn konservativ. Ein Beispiel ist das elektromagnetische Feld (siehe unten).
Manchmal hat man aber noch nicht-konservative Kräfte
Ein Beispiel sind Systeme mit nicht-holonomen Zwangsbedingungen (siehe oben) oder Reibungskräften (zum Beispiel Rayleighsche Dissipationsfunktion).
Die Lagrange-Gleichungen zweiter Art ergeben sich als sogenannte Euler-Lagrange-Gleichungen[4] eines Variationsproblems und liefern die Bewegungsgleichungen, wenn die Lagrange-Funktion gegeben ist. Sie folgen aus der Variation des mit der Lagrange-Funktion gebildeten Wirkungsintegrals im Hamiltonschen Prinzip. Dazu betrachtet man alle möglichen Bahnkurven
Das hamiltonsche Prinzip besagt, dass für die klassische Bahn das Wirkungsintegral stationär unter Variation der Bahnkurven ist:
Eine Näherung in erster Ordnung lautet für eine gewöhnliche Funktion
also
In erster Ordnung ergibt sich die Variation des Integrals also zu
Nun führt man eine partielle Integration in dem Term aus, der die Ableitung nach der Zeit enthält:
Hierbei wird benutzt, dass
ist, da Anfangs- und Endpunkt festgehalten werden. Daher gilt für die Randterme
Damit resultiert schließlich
Da nun
Für jede generalisierte Koordinate
Wenn die Lagrange-Funktion
ist eine Erhaltungsgröße; sein Wert ändert sich nicht während der Bewegung, wie gleich gezeigt wird: Wenn die Lagrange-Funktion nicht von
Dann folgt aber aus der Euler-Lagrange-Gleichung, dass die Zeitableitung des zugehörigen konjugierten Impulses verschwindet und er somit zeitlich konstant ist:
Allgemeiner gehört nach dem Noether-Theorem zu jeder kontinuierlichen Symmetrie der Wirkung eine Erhaltungsgröße. Bei einer zyklischen Variablen ist die Wirkung invariant unter der Verschiebung von
In der Feldtheorie ergibt sich die Bewegungsgleichung aus dem hamiltonschen Prinzip für Felder zu
wobei
Man kann dies in Kurzform auch schreiben als
mit der so definierten Variationsableitung
Hinweis: Der Lagrange-Formalismus ist auch der Ausgangspunkt vieler Formulierungen der Quantenfeldtheorie.
In der relativistischen Mechanik kann die Lagrange-Funktion eines freien Teilchens aus dem hamiltonschen Prinzip abgeleitet werden, indem für die Wirkung der einfachste Fall eines relativistischen Skalars angenommen wird:
wobei
Die Lagrange-Funktion eines freien Teilchens ist hier nicht mehr mit der kinetischen Energie identisch (manchmal spricht man deshalb auch von kinetischer Ergänzungsenergie T in der Lagrange-Funktion). Die relativistische kinetische Energie eines Körpers mit der Masse
wohingegen für die Lagrange-Funktion die kinetische Ergänzungsenergie
maßgeblich ist. Die Lagrange-Funktion für ein Teilchen in einem Potential V ergibt sich dann zu
Für ein
wobei
Für kleine Geschwindigkeiten
Die nullte Ordnung der Entwicklung ist eine Konstante, die negative Ruheenergie. Da die Lagrange-Gleichungen invariant sind unter Addition einer Konstanten zur Lagrange-Funktion, kann man den konstanten ersten Term weglassen und man erhält wieder die klassische kinetische Energie:
Richard Feynman hat als Erster diese Herangehensweise auch konsequent für die Herleitung der Gleichungen der Quantenmechanik verwendet. In der klassischen Physik ergeben sich die oben beschriebenen Lagrange-Gleichungen aus der Forderung, dass das Wirkungsintegral stationär wird. In Feynmans Pfadintegral-Formalismus ist die quantenmechanische Wahrscheinlichkeitsamplitude, dass ein System zwischen Anfangs- und Endbedingungen einen bestimmten Pfad einschlägt, proportional zu
Eine Masse
Die Lagrange-Funktion lautet daher:
Die Lagrange-Funktion wiederum wird zur analytischen Beschreibung des physikalischen Problems in die Euler-Lagrange-Gleichung eingesetzt, was dann auf Gleichungen führt, die den Bewegungsgleichungen in der Newtonschen Mechanik entsprechen. In diesem Beispiel lautet die generalisierte Koordinate
Dies führt mit obigen Formeln für
und damit auf die Bewegungsgleichung des Systems:
Die allgemeine Lösung dieser Differentialgleichung ist
Eine Punktladung
Die Felder (Magnetfeld
Die kinetische Energie des Teilchens ist klassisch:
Das „Potential“ ist hier allerdings geschwindigkeitsabhängig, man spricht deshalb wie oben dargestellt von einem generalisierten Potential:
Somit ist die Lagrange-Funktion eines geladenen Teilchens im elektromagnetischen Feld:
Die Euler-Lagrange-Gleichung
Die Achse einer Aufzugtrommel wird durch ein Drehmoment
Zwischen den Koordinaten
Die kinetische Energie ist:
Die virtuelle Arbeit der eingeprägten Kräfte ist
Daraus folgt schließlich die Bewegungsgleichung
Die Auflösung dieser Gleichung nach der Winkelbeschleunigung ergibt
Bei der Atwoodschen Fallmaschine betrachtet man zwei Punktmassen im Gravitationsfeld der Erde, die über eine Rolle in der Höhe h aufgehängt und durch ein Seil der Länge l verbunden seien. Die Zwangsbedingung lautet in diesem Fall:
Wird das Seil berücksichtigt, das auf der Rolle (Rollenradius r) liegt, dann ergibt sich:
Die potentielle Energie V berechnet sich zu:
Für die Gradienten erhält man
Dies führt auf das System der Lagrange-Gleichungen 1. Art:
Dies kann man auflösen und erhält z. B. für bekannte Anfangsbedingungen:
Die 1. Masse (
Die Zwangsbedingungen
Aus 4 Zwangsbedingungen bei 2 Massen im
In Zylinderkoordinaten können die beiden generalisierten Koordinaten nun als
gewählt werden, wobei mittels der 4. Zwangsbedingung auch die Bewegung der
Die kinetische Energie des Systems lautet nun
Da
Daraus folgt dann die Lagrangefunktion
Da bei dieser Problemstellung zwei generalisierte Koordinaten vorliegen, folgt jeweils eine Bewegungsgleichung für
Aus der Gleichung für
die Existenz einer Erhaltungsgröße, des Drehimpulses in
In der allgemeinen Relativitätstheorie durchlaufen frei fallende Teilchen Weltlinien längster Zeit: Zwischen zwei (genügend nah beieinander liegenden) Ereignissen
mit der Lagrange-Funktion
Dabei sind
Der zu
und die Euler-Lagrange-Gleichungen lauten
Verwenden wir hier als Abkürzung das Christoffel-Symbol
so erweist sich die Weltlinie längster Dauer als Gerade: Die Richtung der Tangente an die Weltlinie
ändert sich nicht bei Parallelverschiebung längs der Weltlinie
Die Parametrisierung wird nicht festgelegt. Verfügen wir so über sie, dass der Tangentialvektor überall gleich lang ist, dann ist
Dies ist die allgemein-relativistische Form der Bewegungsgleichung eines frei fallenden Teilchens. Die Gravitation ist in den
Der Lagrange-Formalismus wird in vielen ein- und weiterführenden Lehrbüchern der klassischen Mechanik behandelt.
Literatur zu Pfadintegralen.