Brackett-Serie

Brackett-Serie

Version vom 14. Mai 2019, 19:52 Uhr von imported>LoRo (→‎Mathematische Beschreibung)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termschema des Wasserstoffatoms

Als Brackett-Serie wird die Folge von Spektrallinien im Spektrum des Wasserstoffatoms bezeichnet, deren unteres Energieniveau in der N-Schale liegt.

Weitere Serien sind die Lyman-, Balmer- (vgl. auch Ausführungen dort), Paschen-, Pfund- und die Humphreys-Serie.


Spektrum

Die Spektrallinien der Brackett-Serie liegen allesamt im infraroten Bereich des Lichts. Sie wurden im Jahr 1922 von dem US-amerikanischen Astronomen Frederick Sumner Brackett entdeckt.[1]

n 5 6 7 8 9
Wellenlänge (nm) 4052,5 2625,9 2166,1 1945,1 1818,1 1458,0

Mathematische Beschreibung

Die Wellenzahlen der Spektrallinien sind durch die Formel

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde\nu = R_\infty \left( {1 \over 4^2} - {1 \over n^2} \right)

gegeben ist.[1] Darin sind

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R_\infty = 1{,}0973731534\cdot 10^{7}\, {\mathrm{m^{-1}}}

die Rydberg-Konstante und n ganze Zahlen größer 4.

Die Wellenzahl lässt sich durch die Beziehung

λ=1ν~

in die Wellenlänge, bzw. durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \tilde\nu \cdot c \cdot h

in die Energie des zugehörigen Photons umrechnen. In letzterer Formel sind c die Lichtgeschwindigkeit im Vakuum und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): h das plancksche Wirkungsquantum.

Siehe auch

Einzelnachweise

  1. 1,0 1,1 H. Haken, H. C. Wolf: Atom- und Quantenphysik, Springer-Verlag (1980), ISBN 3-540-09889-5, Seite 93