Die Airy-Formel, benannt nach dem Mathematiker und Astronom George Biddell Airy, gibt den Verlauf der transmittierten Intensität elektromagnetischer Strahlung in einem Fabry-Pérot-Interferometer an, in Abhängigkeit vom Verhältnis der Wellenlänge oder Frequenz der Strahlung zum freien Spektralbereich des Interferometers.
Die Airy-Formel ergibt sich, wenn man die elektrischen Felder aller im Interferometer umlaufenden Teilwellen phasen- und amplitudenrichtig addiert.
Die Intensität der im Interferometer umlaufenden Strahlen ist proportional zur transmittierten Intensität. Bei der Berechnung muss die nicht-ideale Reflexion an den beiden Endspiegeln mit dem Amplituden-Reflexionskoeffizienten $ r\neq 1 $ berücksichtigt werden. Er ist über $ r^{2}+t^{2}=1 $ mit dem Amplituden-Transmissionskoeffizienten $ t $ verknüpft. Nach $ m $ Umläufen, also $ 2m $ Reflexionen, ist der Betrag des elektrischen Feldes um den Faktor $ r^{2m} $ kleiner.
Während eines Umlaufs, d. h. wenn eine Teilwelle das Interferometer einmal hin und zurück durchlaufen hat, akkumuliert diese einen Phasenwinkel $ 2\varphi $ (also $ 1\varphi $ pro zurückgelegter Resonatorlänge $ L $). Diese Phase hängt ab
Dies lässt sich auch ausdrücken als Verhältnis von Lichtfrequenz $ \nu $ zum freien Spektralbereich $ \Delta \nu ={\frac {c}{2nL}} $ (Einheit Frequenz) des Fabry-Pérot-Interferometers:
Die elektrische Feldstärke $ E $ im Innern des Resonators ist
mit der Feldstärke $ E_{i} $ des einfallenden Lichts.
In der obigen Rechnung wurde nach einer Indexverschiebung die geometrische Reihe ausgewertet. Das Betragsquadrat dieses Ausdrucks ergibt mit verschiedenen trigonometrischen Identitäten die Airy-Formel:
In dieser Intensitätsdarstellung werden verwendet: