Phasengitter

Phasengitter

Phasengitter sind optische Beugungsgitter, welche die Phase der durchlaufenden Lichtwelle beeinflussen. Ideale Phasengitter sind vollständig durchsichtig, an den Gitterstegen wird das Licht aufgrund des Brechungsindexes des Materials verzögert. Varianten:

  • Material ist an Stegen dicker oder hat einen geänderten Brechungsindex
  • Übergänge zwischen Stegen und Spalte sind sprunghaft oder fließend
  • Gitter ist durchsichtig (Transmissionsgitter) oder reflektiert (Reflexionsgitter)

Eine Verzögerung um beispielsweise eine halbe Wellenlänge $ \lambda /2 $ entspricht 180° Phasenverschiebung.

Wirkung

Transmissions-Phasengitter (Gitterkonstante 1 µm). Das Gitter liegt auf einer Tischkante und wird von unten beleuchtet (Taschenlampe mit 3 LEDs).
Eigenbau-Phasengitter mit Gitterkonstante 2 mm (zur Sichtbarkeit von hinten beleuchtet, oben) und erzeugter Talbot-Effekt (gepunktete Lichtzeile; unten)

Phasengitter sind durchsichtig und deshalb nicht gut sichtbar. Die Beugung (wie an jedem optischem Gitter) kann jedoch ausgenutzt werden:

  • Ein dünner monochromatischer Laserstrahl wird in mehrere Richtungen aufgeteilt.
  • Für bessere Ergebnisse stellt man hinter das Gitter eine (Sammel-)Linse und in den Brennpunkt der Linse einen Beobachtungsschirm. Die Linse gruppiert dann Lichtstrahlen nach ihrem Ablenkwinkel. Das benötigt einen hinreichend parallelen Lichtstrahl, erlaubt aber breitere Strahlen und gröbere Gitter.
  • Bei sehr groben Gittern können die geringen Ablenkwinkel mit dem Talbot-Effekt dargestellt werden.

Anwendung

Phasengitter können gegenüber Amplitudengittern diese Vorteile haben:

  • Energie: Die Lichtstärke bleibt voll erhalten.
  • Fertigung: Phasengitter können z. B. aus einer stehenden Welle (Ultraschall, Licht) bestehen. Die Welle modifiziert den Brechungsindex des Mediums. Ein Beispiel sind Akustooptische Modulatoren.
  • Röntgen: Röntgenstrahlen werden von keinem Material perfekt absorbiert. Deshalb sind die Stege in Amplitudengittern niemals perfekt absorbierend. Phasengitter dagegen lassen sich gut fertigen[1].

Auslegung

Phasengitter können beispielsweise darauf ausgelegt sein, Licht einer vorgegebenen Wellenlänge $ \lambda $ um eine halbe Wellenlänge $ \lambda /2 $ zu verzögern. Hat das Material des Gitters den Brechungsindex $ n $, so müssen die Stege des Gitters höher sein um

$ \Delta h={\frac {\lambda }{2(n-1)}} $

Haben die "Stege" des Gitters einen um $ \Delta n $ höheren Brechungsindex als die "Spalten" des Gitters, so beträgt die Höhe des Gitters $ \Delta h=\lambda /(2\Delta n) $.

Herleitung: Durch das Material ändert sich die Frequenz $ f $  des Lichts nicht gegenüber dem Vakuum. Wegen der auf $ c_{n}=c_{0}/n $  reduzierten Phasengeschwindigkeit des Lichts sinkt die Wellenlänge ($ \lambda =c/f $ ) im Material auf $ \lambda _{n}=\lambda /n $. Damit ergibt sich die Bedingung:

$ 1/2={\frac {\Delta h}{\lambda _{n}}}-{\frac {\Delta h}{\lambda }}={\frac {(n-1)\cdot \Delta h}{\lambda }} $.

Einzelnachweise

  1. KIT Institut für Mikrostrukturtechnik (Memento des Originals vom 5. Februar 2012 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.imt.kit.edu, Stichwort "Röntgenoptik", Abschnitt Röntgengitter

Die News der letzten Tage