Metallizität

Die Metallizität, d. h. die Metallhäufigkeit, ist eine in der Astrophysik gebräuchliche Bezeichnung für die Häufigkeit der schweren chemischen Elemente in Sternen.

Als „Metalle“ werden dabei, abweichend von der chemischen Bedeutung dieses Begriffes, meist alle Elemente außer Wasserstoff und Helium bezeichnet, seltener die Elemente ab Kohlenstoff, also ab einer Kernladungszahl von sechs.

Entstehung schwerer Elemente

Die schweren Elemente wurden im Universum erst durch Kernreaktionen in Sternen gebildet (die Nukleosynthese), deswegen hängt die Metallizität eng mit der Entstehungszeit eines Sternes zusammen:

  • Sterne mit niedriger Metallizität (Population II) sind in einem früheren Entwicklungsstadium des Universums entstanden, als erst wenige „Metalle“ vorhanden waren.
  • Sterne mit hoher Metallizität (Population I) sind zu einem späteren Zeitpunkt aus der mit schweren Elementen angereicherten „Asche“ früherer Sternengenerationen entstanden.

Die Elemente Lithium, Beryllium und Bor, zwischen Helium und Kohlenstoff, kommen in sehr geringen Konzentrationen in Sternatmosphären vor. Sie können nicht aus Sternen stammen, denn sehr viel schnellere Syntheseschritte zerstören sie gleich wieder. Sie stammen – außer dem kosmologischen Anteil von Lithium-7 – aus der Spallation schwererer Elemente durch kosmische Strahlung im interstellaren Gas.

Ermittlung

Relative Werte: bezogen auf die Sonne

Als Maß für die Metallizität eines Sterns wird zunächst häufig nicht die Masse, sondern die Teilchenzahl $ N $ seiner schweren Elemente auf die des Wasserstoffs bezogen; diese relative Elementhäufigkeit kann aus den gemessenen Stärken der Absorptionslinien von Eisen und Wasserstoff ermittelt werden. Für normale Hauptreihensterne wird die relative Elementhäufigkeit dann als logarithmiertes Verhältnis mit der entsprechenden Häufigkeit der Sonne verglichen (normiert), da sich die Elemente gleichförmig im Universum anreichern:

$ {\text{Metallizität}}[\mathrm {Fe} /\mathrm {H} ]=\lg {\left({\frac {N_{\mathrm {Fe} }}{N_{\mathrm {H} }}}\right)}\underbrace {-\lg {\left({\frac {N_{\mathrm {Fe} }}{N_{\mathrm {H} }}}\right)_{\odot }}} _{-(-4,5)=+4,5(s.u.)} $

Nach dieser Formel

  • hat die Sonne (Index $ _{\odot } $) definitionsgemäß eine Metallizität von 0,
  • enthalten Sterne mit einer positiven Metallizität relativ mehr Eisen als die Sonne und sind damit jünger,
  • enthalten Sterne mit einer negativen Metallizität relativ weniger Eisen als die Sonne und sind damit älter.

Absolute Werte

Das oben verwendete Teilchenzahl-Verhältnis zwischen Eisen- und Wasserstoff-Atomen in der Sonne beträgt:

$ \left({\frac {N_{\mathrm {Fe} }}{N_{\mathrm {H} }}}\right)_{\odot }\approx {\frac {1}{31000}}\approx 0{,}0032\,\% $, was einem logarithmierten Wert von −4,5 entspricht ($ 0{,}0032\,\%\approx 10^{-4{,}5} $).

Daher liegt der Massenanteil des Eisens an der Sonnenmasse bei ca. 0,16 %.[1]

Anhaltspunkte für das Alter der Hauptreihensterne[2]
Alter
(109 Jahre)
Verhältnis Fe/H der lg X lg X − lg X Bemerkung
Masse Atome X
11,75 0,04 % 0,0008 % −5,114 −0,619
04,57 0,16 % 0,0032 % −4,500 0 Sonne
02,40 0,40 % 0,0077 % −4,114 0,381
01,45 0,80 % 0,0154 % −3,813 0,682
00,90 2,00 % 0,0385 % −3,415 1,080
00,55 5,00 % 0,0962 % −3,017 1,478

Für chemisch pekuliäre oder bereits von der Hauptreihe weg entwickelte Sterne gilt das allgemeine Häufigkeitsmuster nicht mehr.

Populationen

Die Metallizität liegt bei Sternen unserer Galaxis etwa zwischen −5,6 und +1 (angegeben jeweils als $ \lg {\left({\tfrac {N_{\mathrm {Fe} }}{N_{\mathrm {H} }}}\right)} $, d. h. nicht bezogen auf die Sonne), wobei nur die ältesten Sterne der Population II einen Wert im Bereich −5 erreichen und nur wenige von ihnen bekannt sind:

  • Langjähriger Spitzenreiter war der Stern CD−38°245, dessen Metallizität 1984 mit −4,0 bestimmt wurde. Diese bedeutet, dass sein Gehalt an Eisen 10.000-mal kleiner ist als der der Sonne.
  • 2002 wurde mit HE 0107-5240 ein Stern mit einer Metallizität von −5,2 entdeckt,
  • bald darauf der Stern HE 1327-2326 mit einem Wert von −5,4, was einen Eisengehalt von einem 250.000stel des solaren Wertes bedeutet. Allerdings enthält dieser Stern überraschenderweise einen sehr großen Anteil an anderen Elementen wie Natrium, Magnesium, Titan und vor allem Strontium.
  • Der Stern SDSS J102915+172927 (relative Magnitude 16,9) scheint nahezu metallfrei zu sein. Das Fehlen von Lithium wird mit der hohen Temperatur des Sterns erklärt.[3]
  • Die Metallizität von Eisen in SMSS J031300.36-670839.3 ist geringer als −7,1.

Üblicherweise werden bei solchen Sternen zur Altersbestimmung und Kategorisierung auch die Häufigkeiten anderer Elemente wie Thorium, Uran, Iridium und Kohlenstoff ermittelt.[4]

Literatur

  • Bradley W. Carroll, Dale A. Ostlie: An Introduction to Modern Astrophysics. Addison-Wesley, Reading MA u. a. 1996, ISBN 0-201-54730-9, S. 920f. (International Edition. Nachdruck. ebenda 2005, ISBN 0-321-21030-1).

Weblinks

Einzelnachweise

  1. Eisen ist ca. 56-mal so schwer wie Wasserstoff
  2. EVOLVED STELLAR POPULATIONS
  3. The Star That Should Not Exist
  4. Anna Frebel: Auf der Spur der Sterngreise. In: Spektrum der Wissenschaft. September 2008, S. 24–32

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.