Logistische Gleichung

Die logistische Gleichung wurde ursprünglich 1837 von Pierre François Verhulst[1] als demographisches mathematisches Modell eingeführt. Die Gleichung ist ein Beispiel dafür, wie komplexes, chaotisches Verhalten aus einfachen nichtlinearen Gleichungen entstehen kann. Infolge einer richtungsweisenden Arbeit des theoretischen Biologen Robert May aus dem Jahr 1976[2] fand sie weite Verbreitung. Bereits 1825 stellte Benjamin Gompertz in einem verwandten Zusammenhang eine ähnliche Gleichung vor.[3]

Die zugehörige Dynamik kann anhand eines sogenannten Feigenbaumdiagramms (siehe unten) veranschaulicht werden. Eine wichtige Rolle spielt dabei die schon 1975 von Mitchell Feigenbaum gefundene Feigenbaum-Konstante.

Das demographische Modell

Für den stetigen Fall siehe logistische Funktion.

Es werden mathematische Gesetzmäßigkeiten gesucht, die die Entwicklung einer Population modellhaft darstellen. Aus der Größe $ X_{n} $ der Population zu einem gewissen Zeitpunkt $ n $ soll auf die Größe $ X_{n+1} $ nach einer Fortpflanzungsperiode (z. B. nach einem Jahr) geschlossen werden.

Das logistische Modell berücksichtigt zwei Einflüsse:

  1. Durch Fortpflanzung vermehrt sich die Population geometrisch. Die Individuenzahl ist im Folgejahr um einen Wachstumsfaktor $ q_{\mathrm {f} } $ größer als die aktuelle Population.
  2. Durch Verhungern verringert sich die Population. Die Individuenzahl vermindert sich in Abhängigkeit von der Differenz zwischen ihrer aktuellen Größe und einer theoretischen Maximalgröße $ G $ mit der Proportionalitätskonstante $ q_{\mathrm {v} } $. Der Faktor, um den sich die Population vermindert, hat also die Gestalt $ q_{\mathrm {h} }=(G-X_{n})\,q_{\mathrm {v} } $.

Um bei der Berechnung der Population im Folgejahr beide Prozesse zu berücksichtigen, multipliziert man die aktuelle Population $ X_{n} $ sowohl mit dem Vermehrungsfaktor $ q_{\mathrm {f} } $ als auch mit dem Hungerfaktor $ q_{\mathrm {h} } $. Man erhält damit die logistische Gleichung

$ X_{n+1}=q_{\mathrm {f} }\,q_{\mathrm {v} }\,X_{n}\,(G-X_{n}) $.

Um die folgenden mathematischen Untersuchungen zu vereinfachen, wird die Populationsgröße $ X_{n} $ oft als Bruchteil $ x_{n} $ der Maximalgröße $ G $ angegeben:

$ x_{n}={\frac {X_{n}}{G}} $ .

Außerdem werden $ G $, $ q_{\mathrm {f} } $ und $ q_{\mathrm {v} } $ zusammengefasst zum Parameter $ r $:

$ r=G\,q_{\mathrm {f} }\,q_{\mathrm {v} } $.

Damit ergibt sich die folgende Schreibweise für die logistische Gleichung:

$ x_{n+1}=r\,x_{n}\,(1-x_{n}/K) $.

Hierbei ist $ K $ die Kapazität des Biotops. Das heißt, es ist die Population, die bei geeigneter Wahl von $ r $ dem Fixpunkt der Dynamik entspricht.

Das mathematische Modell

Man kann ohne Beschränkung der Allgemeinheit $ K=1 $ setzen. Dann ergibt sich

$ x_{n+1}=r\cdot x_{n}\cdot (1-x_{n}) $.

$ x_{n} $ ist dabei eine Zahl zwischen $ 0 $ und $ 1 $. Sie repräsentiert die relative Größe der Population im Jahr $ n $. Die Zahl $ x_{0} $ steht also für die Startpopulation (im Jahr 0). Der Parameter $ r $ ist immer positiv, er gibt die kombinierte Auswirkung von Vermehrung und Verhungern wieder.

Verhalten in Abhängigkeit von r

Die Animation unten zeigt Zeitreihenentwicklungen der Logistischen Gleichung im Zeit- und Frequenzbereich (Fourier-Analysis), die sich für wachsende Parameter $ 2<r<4 $ ergeben. Startwert ist jedes Mal $ x_{0}={\tfrac {1}{2}} $.

Logistic map animation.gif

Gut sichtbar sind die Zonen der Intermittenz innerhalb des deterministischen Chaos.

Bei verschiedenen $ r $ können die folgenden Verhaltensweisen für große $ n $ beobachtet werden. Dabei hängt dieses Verhalten nicht vom Anfangswert ab, sondern nur von $ r $:

  • Mit $ r $ von 0 bis 1 stirbt die Population in jedem Fall aus.
  • Mit $ r $ zwischen 1 und 2 nähert sich die Population monoton dem Grenzwert $ {\tfrac {r-1}{r}} $ an.
  • Mit $ r $ zwischen 2 und 3 nähert sich die Population dem Grenzwert $ {\tfrac {r-1}{r}} $ alternierend, d. h. die Werte liegen ab einem bestimmten $ n $ abwechselnd über und unter dem Grenzwert.
  • Mit $ r $ zwischen 3 und $ 1+{\sqrt {6}} $ (etwa 3,45) wechselt die Folge bei fast allen Startwerten (ausgenommen 0, 1 und $ 1-{\tfrac {1}{r}} $) zwischen den beiden Umgebungen zweier Häufungspunkte.
  • Mit $ r $ zwischen $ 1+{\sqrt {6}} $ und ungefähr 3,54 wechselt die Folge bei fast allen Startwerten zwischen den Umgebungen von vier Häufungspunkten.
  • Wird $ r $ größer als 3,54, stellen sich erst 8, dann 16, 32 usw. Häufungspunkte ein. Die Intervalle mit gleicher Anzahl von Häufungspunkten (Bifurkationsintervalle) werden immer kleiner; das Längenverhältnis zweier aufeinanderfolgender Bifurkationsintervalle nähert sich der Feigenbaumkonstanten. Diese Konstante ist auch in anderen mathematischen Zusammenhängen von Bedeutung. (Zahlenwert: δ ≈ 4,6692016091029906718532038204662016172581…).
  • Bei $ r $ annähernd 3,57 beginnt das Chaos: Die Folge springt zunächst periodisch zwischen den Umgebungen der nun instabilen Häufungspunkte umher. Mit weiter wachsendem $ r $ verschmelzen diese Intervalle so, dass sich deren Anzahl im Rhythmus der Feigenbaumkonstante halbiert, bis es nur noch ein Intervall gibt, in dem die Folge chaotisch ist. Perioden sind dann nicht mehr erkennbar. Winzige Änderungen des Anfangswertes resultieren in unterschiedlichsten Folgewerten – eine Eigenschaft des Chaos.
  • Bei vielen Koeffizienten zwischen 3,57 und 4 kommt es zu chaotischem Verhalten, obwohl für bestimmte $ r $ wieder Häufungspunkte (d. h. stabile periodische Orbits, gegen die fast jeder Anfangswert konvergiert) vorhanden sind. Beispielsweise existieren in der Nähe von $ r=3{,}82 $ bei steigendem $ r $ erst 3, dann 6, 12 usw. Häufungspunkte. Ebenso gibt es r-Werte mit 5 oder mehr Häufungspunkten – alle Periodendauern tauchen auf.
  • Drei tiefliegende mathematische Sätze besagen folgendes: (1) jedes noch so kleine Intervall von Koeffizienten enthält Parameter, für die es stabile periodische Orbits gibt (so dass die Dynamik eben nicht chaotisch ist): also nicht-chaotische Parameter sind "dicht" im Intervall der Koeffizienten. Chaotische Parameter enthalten also keine Intervalle. Aber (2) die chaotischen Parameter haben positives Maß: also mit echt positiver Wahrscheinlichkeit liefert ein zufälliger Parameter chaotische Dynamik. Schließlich (3) hat fast jeder reelle Koeffizient $ r $ (im Sinne voller Wahrscheinlichkeit) entweder einen stabilen periodischen Orbit (gegen den fast jeder Anfangswert konvergiert) oder ist in strengem Sinne "chaotisch". (Weitere dynamische Möglichkeiten gibt es, haben aber Wahrscheinlichkeit null.)
  • Für $ r $ größer 4 divergiert die Folge für fast alle Anfangswerte und verlässt das Intervall $ [0;1] $.

Dieser Übergang von konvergentem Verhalten über Periodenverdopplungen zu chaotischem Verhalten ist generell für nichtlineare Systeme typisch, die in Abhängigkeit von einem Parameter chaotisches oder nicht-chaotisches Verhalten zeigen.

Eine Erweiterung des Wertebereiches auf die komplexen Zahlen führt nach einer Koordinatentransformation zur Mandelbrotmenge.

Beispiel

Die „logistische Kurve“ mit einer Wachstumsrate $ r=1{,}4 $ verläuft S-förmig. Ab einem Wert um 3,6 bricht Chaos aus, wie die Abbildung mit $ r=3{,}81 $ illustriert.[4]

„Logistische Kurve“ mit einer Wachstumsrate r = 1,4
„Logistische Kurve“ mit einer Wachstumsrate r = 3,81

Graphische Darstellung

Das folgende Bifurkationsdiagramm, bekannt als Feigenbaum-Diagramm, fasst diese Beobachtungen zusammen. Die horizontale Achse gibt den Wert des Parameters $ r $ an und die vertikale Achse die Häufungspunkte für die Folge $ x_{n} $.

Analytische Lösung

Für den Parameter $ r=2 $ existiert eine analytische Lösung:

$ x(n)={\frac {1}{2}}-{\frac {1}{2}}(1-2x_{0})^{\left(2^{n}\right)} $.

Für die Parameter $ r=-2 $ und $ r=4 $ können ebenfalls analytische Lösungen angegeben werden.

Einzelnachweise

  1. Pierre-François Verhulst: Notice sur la loi que la population suit dans son accroissement. In: Correspondance Mathématique et Physique. Band 10, 1838, ZDB-ID 428605-4, S. 113–121.
  2. Robert May: Simple mathematical models with very complicated dynamics Nature V. 261, S. 459–467 (10 Juni 1976)
  3. Benjamin Gompertz: On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. In: Philosophical Transactions of the Royal Society of London. Vol. 115, 1825, ISSN 0260-7085, S. 513–585.
  4. Jürgen Beetz: 1 + 1 = 10. Mathematik für Höhlenmenschen. Springer, Heidelberg 2012, ISBN 978-3-8274-2927-8, S. 313 f.

Weblinks

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.