Lithiumniobat

Kristallstruktur
Struktur von Lithiumniobat
Vorlage:Farbe Li+ 0 Vorlage:Farbe Nb5+0 Vorlage:Farbe O2−
Kristallsystem

trigonal

Raumgruppe

R3c (Nr. 161)Vorlage:Raumgruppe/161

Gitterkonstanten

a = 515 pm
c = 1386 pm

Koordinationszahlen

Li[12] (6+6), Nb[6], O[6] (4+2)

Allgemeines
Name Lithiumniobat
Andere Namen

Lithium-Niob-Oxid

Verhältnisformel LiNbO3
CAS-Nummer Vorlage:CASRN
PubChem 159404
Kurzbeschreibung

weißlicher, geruchloser Feststoff[1]

Eigenschaften
Molare Masse 147,85 g·mol−1
Aggregatzustand

fest

Dichte

4,64 g·cm−3[2]

Schmelzpunkt

1275 °C[1]

Brechungsindex

2,2871[3] (23 °C)

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze [1]
Toxikologische Daten

8000 mg·kg−1 (LD50, Ratte, oral)[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Lithiumniobat ist eine chemische Verbindung mit der Formel LiNbO3. Es ist ein transparenter, kristalliner Feststoff, der nicht in der Natur vorkommt. Lithiumniobatkristalle werden üblicherweise nach dem Czochralski-Verfahren aus einer Schmelze (Gemisch aus Lithiumoxid und Niob(V)-oxid) gezogen. Aufgrund seiner Kristallstruktur hat es einige technisch nutzbare Eigenschaften, vor allem als Material in der nichtlinearen Optik.

Kristallstruktur

Lithiumniobat kristallisiert im trigonalen Kristallsystem in der Raumgruppe R3c (Raumgruppen-Nr. 161)Vorlage:Raumgruppe/161 mit den Gitterparametern a = 515 pm und c = 1386 pm sowie sechs Formeleinheiten pro Elementarzelle.[4] Die Nb5+-Kationen werden jeweils von sechs Sauerstoffatomen in Form von verzerrten Oktaedern umgeben. Diese [NbO6] verknüpfen über gemeinsame Ecken zu einem dreidimensionalen Netzwerk. In den Lücken des Netzwerks befinden sich die Li+-Kationen die ihrerseits von je zwölf Sauerstoffatomen umgeben sind. Die Koordinationszahl von 12 kann als 6+6 beschrieben werden, da sechs der Sauerstoffatome einen deutlich größeren Abstand zu Lithium haben. Als Koordinationspolyeder ergibt sich für Lithium ein stark verzerrtes Antikuboktaeder.

Physikalische Eigenschaften

Lithiumniobat kristallisiert als farbloser Festkörper mit einem weiten Transparenzbereich beginnend im nahen UV- bis in den mittleren IR-Bereich entsprechend Wellenlängen von 320 bis 5600 nm. Lithiumniobat ist doppelbrechend und hat bei 633 nm Brechungsindices von no = 2,286 und ne = 2,202.

Die Kristalle haben eine Mohs-Härte von 5. Lithiumniobat zeigt eine Anzahl physikalischer Effekte: die stöchiometrische Zusammensetzung (LiNbO3) ist unterhalb der Curie-Temperatur Tc von 1213 °C (1486 K)[5] ferroelektrisch und dadurch optisch nichtlinear, elektrooptisch, photorefraktiv, elastooptisch, piezoelektrisch und pyroelektrisch. Die ferroelektrische Curie-Temperatur ist abhängig von der Zusammensetzung, so beträgt sie für die kongruente Zusammensetzung (hergestellt aus 48,45 % Li2O, 51,55 % Nb2O5) 1143 °C (1416 K).[5] Oberhalb der Curie-Temperatur verliert das Material die ferroelektrischen Eigenschaften und geht in die paraelektrische Phase (Raumgruppe R3c (Nr. 167)Vorlage:Raumgruppe/167) über.[6]

Herstellung

Lithiumniobat kann zum Beispiel durch Festkörper- oder Schmelzenreaktion von Lithiumcarbonat mit Niob(V)-oxid gewonnen werden.

Nanoteilchen

Nanoteilchen von Lithiumniobat werden durch Imprägnierung von porösen Trägersubstanzen durch Lösungen von Metallsalzen mit anschließender Kalzinierung und Auflösung der Trägermatrix oder durch hydrothermale Verfahren hergestellt. Sphärische Nanopartikel mit einem Durchmesser von 10 nm können durch Imprägnierung einer mesoporösen Silikatmatrix mit einer wässrigen Lösung aus LiNO3 und NH4NbO(C2O4)2 und anschließendem zehnminütigen Erhitzen in einem Infrarot-Ofen hergestellt werden.[7]

Einsatzgebiete

  • Interdigitaltransducer und darauf basierend
  • Bandpassfilter (Oberflächenwellenfilter) in Hochfrequenz-Schaltungen, z. B. Mobiltelefonen und Fernsehern
  • Laser
  • Modulatoren
  • Integrierte Optik
  • Holographie

Ähnliche Verbindungen

Das Lithiumtantalat LiTaO3 kristallisiert isotyp zu LiNbO3, das heißt, es hat die gleiche Kristallstruktur.

Siehe auch

Literatur

  • A. M. Prokhorov, Yu S. Kuz'minov: Physics and Chemistry of Crystalline Lithium Niobate. Institute of Physics Publishing, 1999, ISBN 0-85274-002-6.
  • A. Räuber: Chemistry and physics of lithium niobate. In: Current Topics in Materials Science. Band 1. Elsevier Science Publishing, 1978, ISBN 0-7204-0708-7, S. 481–601.
  • R. S. Weis, T. K. Gaylord: Lithium niobate: Summary of physical properties and crystal structure. In: Applied Physics A: Materials Science & Processing. Band 37, Nr. 4, 1985, S. 191–203, doi:10.1007/BF00614817.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 Datenblatt Lithium niobium oxide, Puratronic®, 99.998% (metals basis excluding Ta), Ta <50ppm bei AlfaAesar, abgerufen am {{{Datum}}} (JavaScript erforderlich).
  2. Lithium Niobate, LiNbO3 bei Almaz Optics, abgerufen am 23. August 2011.
  3. A. Alcázar de V., B. Ramiro, J. Rams, B. Alonso, G. Rojo, V. Bermúdez, J.M. Cabrera: Temperature effects in proton exchanged LiNbO3 waveguides. In: Applied Physics B. Band 79, Nr. 7, 2004, S. 845–849, doi:10.1007/s00340-004-1646-8.
  4. R. Hsu, E. N. Maslen, D. du Boulay, N. Ishizawa: Synchrotron X-ray Studies of LiNbO3 and LiTaO3. In: Acta Crystallographica Section B Structural Science. Band 53, Nr. 3, Mai 1997, S. 420–428, doi:10.1107/S010876819600777X.
  5. 5,0 5,1 K. K. Wong: Properties of Lithium Niobate. Emis. Datareviews Series, No. 28, London 2002, ISBN 0-85296-799-3.
  6. H. Lehnert, H. Boysen, F. Frey, A. Hewat, P. Radaelli: A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3. In: Zeitschrift für Kristallographie. Band 212, Nr. 10, 1997, S. 712–719, doi:10.1524/zkri.1997.212.10.712.
  7. Annett Grigas und Stefan Kaskel:: Synthesis of LiNbO3 nanoparticles in a mesoporous matrix. In: Open Access Beilstein Journal of Nanotechnology. Band 2, 2011, S. 28–33, doi:10.3762/bjnano.2.3.

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.