Linus (Mond)

(22) Kalliope I (Linus)
Vorläufige oder systematische Bezeichnung S/2001 (22) 1
Zentralkörper (22) Kalliope
Eigenschaften des Orbits [1]
Große Halbachse 1109 ± 6 km
Periapsis 1091 ± 6 km
Apoapsis 1127 ± 6 km
Exzentrizität 0,016 ± 0,004
Bahnneigung (101 ± 1) oder
(9 ± 1) (Äquatorebene)°
Umlaufzeit 3,596 ± 0,001 d
Mittlere Orbitalgeschwindigkeit 0,0215 km/s
Physikalische Eigenschaften [1]
Scheinbare Helligkeit 9,7 (Absolute) mag
Mittlerer Durchmesser 28 ± 2 km
Masse (4 – 6 · 1016) kg
Achsneigung ~ 0,0°
Fluchtgeschwindigkeit (20) m/s
Oberflächentemperatur (161) K
Entdeckung
Entdecker
Datum der Entdeckung 29. August 2001
Anmerkungen Zweitgrößter bekannter Asteroidenmond im Hauptgürtel.

Linus ist ein Mond des Hauptgürtelasteroiden (22) Kalliope. Mit seinen 28 km Durchmesser gilt er als zweitgrößter Asteroidenmond im Hauptgürtel.

Entdeckung und Benennung

Linus wurde am 29. August 2001 von Jean-Luc Margot und Michael E. Brown am Keck-Observatorium II entdeckt. Nur drei Tage später entdeckte ihn das Team um William J. Merline, François Menard, Laird M. Close, Christophe Dumas, Clark R. Chapman und David C. Slater beim Canada-France-Hawaii Telescope. Beide Teleskope stehen auf dem Mauna Kea auf Hawaii. Die Entdeckung wurde von der Internationalen Astronomischen Union (IAU) am 3. September 2001 bekanntgegeben; der Mond erhielt die vorläufige Bezeichnung S/2001 (22) 1.[2]

Am 8. August 2003 wurde Linus dann offiziell nach Linos benannt, der als Sohn der Muse Kalliope galt, Enkel des Zeus und der Mnemosyne und Erfinder der von Melodie und Rhythmus in der griechischen Mythologie.[3]

Linus („der Klagende“) hießen drei verschiedene Söhne von Apollon, der bekannteste Namensträger wurde der nach diesen benannte Heidenchrist Linus, der nach kirchlicher Überlieferung erster Nachfolger des Simon Petrus als Bischof von Rom war.

Bahneigenschaften

Bahn von Linus um Kalliope (Video)

Linus umläuft Kalliope auf einer leicht retrograden, fast kreisförmigen Bahn zwischen 1091 und 1127 km Abstand zu deren Zentrum (rund 13 Kalliope-Radien). Die Bahnexzentrizität beträgt 0,016 % und die Bahn verläuft fast senkrecht zur Äquatorebene von Kalliope.[4] Damit bewegt sich der Mond weit innerhalb von Kalliopes Hill-Radius von 43.000 km.

Linus umläuft Kalliope in rund 3 1/2 Tagen, was knapp 21 Eigendrehungen von Kalliope entspricht.[1]

Die Präzession der Linusbahn wird für einen Umlauf in nur einigen Jahren geschätzt, was der unregelmäßigen Form von Kalliope zugeschrieben wird. Die Helligkeit des Mondes variierte in verschiedenen Beobachtungen, was auf eine längliche Form hinweist.

Physikalische Eigenschaften

Linus galt einige Zeit nach absoluten Zahlen als größter Asteroidenmond im Hauptgürtel, da sein Durchmesser zunächst auf 38 km geschätzt wurde und in der Folge um 10 km nach unten korrigiert wurde. Trotzdem ist Linus mit 28 km noch immer vergleichsweise groß, da er nur von S/2002 (121) 1 (32 km), dem Mond des Asteroiden (121) Hermione, übertroffen wird und demnach der zweitgrößte im inneren Sonnensystem ist. Im Hauptgürtel wurde bisher nur ein natürlicher Satellit entdeckt, der noch größer ist, der Begleiter des Asteroiden (90) Antiope (84 km). Dieses System muss man jedoch als Doppelsystem auffassen, da S/2000 (90) 1 95,4 % des Durchmessers von Antiope besitzt und das Baryzentrum daher ausserhalb des Hauptkörpers liegt. Das Größenverhältnis relativ zum Zentralkörper beträgt bei Linus gegenüber Kalliope dagegen lediglich 16,7 %.

Rechnet man die Jupiter–Trojaner noch zu dem Gürtel dazu, käme einzig noch das Doppelsystem Patroclus/Menoetius dazu; Menoetius wäre mit 113 km der größte Mond im inneren Sonnensystem, und Linus würde – das Antiope–System eingerechnet – auf den vierten Platz rutschen.

Linus ist vielleicht aus Impaktmaterial eines Einschlages auf Kalliope entstanden oder er ist ein Bruchstück eines möglichen Eltern-Asteroiden, einer „Proto-Kalliope“. Wie der Mutterkörper gehört Linus zu den metallischen Asteroiden, ist also ein M-Typ-Asteroid.

Erforschung

Am 7. November 2006 wurde die erste Sternbedeckung durch einen Asteroidenmond durch eine Gruppe japanischer Astronomen beobachtet, aufgrund einer Prognose durch die Gruppe um Franck Marchis, die auf fünf Jahren Beobachtung des Kalliope-Doppelsystems mit adaptiver Optik durch erdgebundene Teleskope basiert.

Siehe auch

Weblinks

Einzelnachweise

  1. 1,0 1,1 1,2 Franck Marchis et al.: (22) Kalliope and Linus. Abgerufen am 3. September 2017.
  2. Daniel W. E. Green: IAUC Nr. 7703: S/2001 (22) 1 Entdeckungsveröffentlichung (2001). Abgerufen am 3. September 2017.
  3. Daniel W. E. Green: IAUC Nr. 8177: Satellites of (22) Kalliope and (45) Eugenia (Benennung 2003). Abgerufen am 3. September 2017.
  4. Iraida Sokova: The binary asteroid 22 Kalliope: Linus orbit determination on the basis of speckle interferometric observations (2014). Abgerufen am 2. September 2017.

Die News der letzten Tage

21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.
15.11.2022
Sterne | Kernphysik
Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
15.11.2022
Thermodynamik
Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.
14.11.2022
Raumfahrt | Atomphysik | Astrobiologie
Achtung Astronauten! Künstlicher Winterschlaf schützt vor kosmischer Strahlung
Noch ist es ein Blick in die Zukunft: Raumfahrer könnten in einen künstlichen Winterschlaf versetzt werden und in diesem Zustand besser vor kosmischer Strahlung geschützt sein.