Clifford-Algebra

Clifford-Algebra

Die Clifford-Algebra ist ein nach William Kingdon Clifford benanntes[1] mathematisches Objekt aus der Algebra, welches die komplexen und hyperkomplexen Zahlensysteme erweitert. Sie findet in der Differentialgeometrie sowie in der Quantenphysik Anwendung. Sie dient der Definition der Spin-Gruppe und ihrer Darstellungen, der Konstruktion von Spinorfeldern / -bündeln, die wiederum zur Beschreibung von Elektronen und anderen Elementarteilchen wichtig sind, sowie zur Bestimmung von Invarianten auf Mannigfaltigkeiten.

Die Frage nach komplexen Einheiten

Vorbetrachtung

Es gibt in der Mathematik Zahlensysteme (Divisionsalgebren mit Einselement) mit komplexen Einheiten, genauer die komplexen Zahlen, die Quaternionen und Oktaven. In diesen können jeweils 1, 3 oder 7 Elemente $ \mathbf {i} _{k} $ fixiert werden, welche mit der 1 zusammen den Zahlenraum als reellen Vektorraum aufspannen und welche (nicht nur) $ (\mathbf {i} _{k})^{2}=-1 $ erfüllen. Manchmal reicht das nicht aus. Zu einer beliebigen Anzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n werden Strukturen gesucht, welche die reellen Zahlen und Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf i_1,\dots,\mathbf i_n enthalten und in der ein Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \circ definiert ist, welches die Bedingungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf i_k\circ\mathbf i_l+\mathbf i_l\circ\mathbf i_k=2\sigma_k\delta_{kl}

erfüllt, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \delta_{kl} das Kroneckersymbol ist und $ \sigma _{k}=\pm 1 $. Das Verknüpfungssymbol lässt man gerne weg.

Die Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf i_k heißen die Erzeugenden oder Generatoren der Clifford-Algebra. Das Produkt aller Erzeugenden wird durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega bezeichnet, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega = \mathbf i_1\mathbf i_2\cdots\mathbf i_n . Das Quadrat von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega kann +1 oder −1 sein.

Diese Struktur ist, bis auf die genannten Beispiele, kein Zahlensystem in obigem Sinne, sondern kann nur als Algebra realisiert werden, in welcher die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf i_k Erzeugende sind. Eine solche Algebra wird Clifford-Algebra genannt, nach William Kingdon Clifford, der sie im Jahr 1878 entdeckt hat. Sie wird mit $ Cl(p,q) $ oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(p,q,\R) bezeichnet, falls

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_1=\dots=\sigma_p=-1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma_{p+1}=\dots=\sigma_{p+q}=1

und sonst keine algebraische Beziehung der Erzeugenden gilt.

Bis hierher haben wir formale Rechenregeln aufgestellt, wissen aber noch nichts über die Existenz, Eindeutigkeit und Struktur einer solchen Algebra. Dieses Problem ist sofort gelöst, wenn man die Clifford-Algebra als Teil einer reellen Matrixalgebra darstellen kann.

Allgemeinere Betrachtung

Im mathematischen Teil werden die Rechenregeln durch eine universelle Eigenschaft ergänzt und die Clifford-Algebra aus einer Tensoralgebra konstruiert. Es sei vorerst nur angemerkt, dass die Erzeugenden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf i_1,\dots,\mathbf i_n einen reellen (Unter-)Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V der Dimension n=p+q innerhalb der Algebra aufspannen. Summiert man die definierende Eigenschaft über die Koordinatendarstellung eines Vektors $ {\vec {v}}=x^{1}i_{1}+\dots +x^{n}i_{n} $ dieses Vektorraums, so ergibt sich eine koordinatenfreie (in physikalischer Sprechweise: kovariante) Darstellung der definierenden algebraischen Relation.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec v\circ \vec v=-Q(\vec v)\cdot 1_\R , wobei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q(\vec v):=(x^1)^2+\dots+(x^p)^2-(x^{p+1})^2-\dots-(x^n)^2 eine quadratische Funktion auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V ist, welche ein (Pseudo-)Skalarprodukt definiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q(t\vec v)=t^2Q(\vec v) und
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \langle\vec v,\vec w\rangle:=\frac14Q(\vec v+\vec w)-\frac14Q(\vec v-\vec w) .

Die Erzeugenden bilden dann eine Orthonormalbasis auf $ (V,\langle \cdot ,\cdot \rangle ) $.

Ein solches Paar aus reellem Vektorraum und darauf definierter quadratischer Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (V,Q) ist der Ausgangspunkt für die mathematische Theorie der Clifford-Algebren.

Definition

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k ein Körper und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (V,Q) ein endlichdimensionaler quadratischer Raum.

Dann ist die Clifford-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(V,Q) des quadratischen Raums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (V,Q) definiert als die größte assoziative, aber nicht notwendig kommutative Algebra über $ k $, die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V und dem Einselement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1_{Cl} erzeugt wird und deren Multiplikation die Relation

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v \cdot v = -Q(v) 1_{Cl}

erfüllt.

Dies ist wohldefiniert, da gezeigt werden kann, dass eine lineare Einbettung (also ein Vektorraumhomomorphismus) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j \colon (V,Q) \to A in eine assoziative Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k -Algebra mit Eins, so dass die Relation

$ j(v)\cdot j(v)=-Q(v)1_{Cl} $

gilt, zu einem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k -Algebra-Homomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{f} \colon Cl(V,Q) \to A fortgesetzt werden kann. Daher ist die Clifford-Algebra bis auf Isomorphie eindeutig.[2][3]

Beispiele

Komplexe Zahlen

Die komplexen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Complex können als einfachste Clifford-Algebra mit einer einzigen Erzeugenden verstanden werden. Der Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V ist eindimensional und von $ i $ erzeugt, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V = i \R und die quadratische Form auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q(x) = x^2 . Die Algebra ist als reeller Vektorraum zweidimensional mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 = 1_{Cl} und $ i\in V $ als Basiselementen, sie lässt sich identifizieren mit der Algebra der 2x2-Matrizen der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix}a&-b\\b&a\end{pmatrix} .

Solche Matrizen erfüllen also die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x \cdot x = - x^2 \cdot \begin{pmatrix}1& 0\\ 0& 1 \end{pmatrix} .

Diese Clifford-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(\R,x^2) wird auch, da sie ein Beispiel einer reellen Clifford-Algebra ist, mittels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(1,0) notiert. Dies wird später in diesem Artikel definiert.

Quaternionen

Die Quaternionen ergeben sich aus der Clifford-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C l(2,0) . Die Erzeugenden $ (i,j) $ haben ein nichttriviales Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k=i\cdot j , aus den definierenden Eigenschaften des Produkts ergibt sich, dass es mit dem Produkt der Quaternionen übereinstimmt. Der Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V ist reell zweidimensional, die Algebra reell vierdimensional. Eine Matrixdarstellung ist die Teilalgebra der komplexen 2x2-Matrizen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix}a&b\\-\bar b&\bar a\end{pmatrix} ,

durch Einsetzen der reellen 2x2-Matrizen der komplexen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b ergibt sich eine Teilalgebra der reellen 4x4-Matrizen.

Anormal-komplexe Zahlen

Die Algebra der anormal-komplexen Zahlen $ Cl(0,1) $, hat ein Erzeugendes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i mit Quadrat 1. Daher können Elemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a + b\,\mathrm i der reell 2-dimensionalen Algebra in zwei Summanden aufgespaltet werden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac 1 2\,(a+b)\,(1+\mathrm i) + \tfrac 1 2\,(a-b)\,(1-\mathrm i) , von denen der erste unter Multiplikation mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i sein Vorzeichen behält und der zweite sein Vorzeichen ändert. In der Multiplikation zweier Elemente multiplizieren sich diese Summanden separat, wie in der Multiplikation zweier Diagonalmatrizen. Die Algebra ist also isomorph zur direkten Summe zweier Kopien von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R , $ Cl(0,1)\cong \mathbb {R} \oplus \mathbb {R} $.

Graßmann-Algebra

Die Graßmann-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda V eines reellen Vektorraumes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V ist die Clifford-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(V,0) mit der trivialen quadratischen Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q=0 . Innerhalb einer beliebigen Clifford-Algebra kann die Graßmann-Algebra konstruiert werden, indem das Keilprodukt als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u\wedge v= \tfrac{1}{2}(uv-vu) – und analog als alternierende Summe bei mehr als zwei Faktoren – definiert wird.

Es kann umgekehrt jede Clifford-Algebra $ Cl(V,Q) $ innerhalb der Graßmann-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Lambda V konstruiert werden, indem in dieser ein neues Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \circ definiert wird als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v\circ w:=v\wedge w-q(v,w) .

Die Dimension der Algebra bleibt dabei erhalten, sie ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2^n , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=\dim(V) .

Diese Beziehung ist unter anderem für die Quantisierung supersymmetrischer Feldtheorien wichtig.

Alternative Definitionen

Die Clifford-Algebra ist ein aus mathematischer Sicht natürliches Konstrukt zu einem Vektorraum mit darauf definierter quadratischer Form, denn sie kann als initiales Objekt einer Kategorie charakterisiert werden.

Als initiales Objekt

Man betrachte die Kategorie aller assoziativen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb K -Algebren $ A $, in welche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V eingebettet ist, das heißt aller Paare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (A,j) mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j \colon V\to A linear, die zusätzlich noch die Eigenschaft

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j(v)\cdot j(v)=-Q(v)\cdot 1_A für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V

beziehungsweise die äquivalente Aussage

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j(v)\cdot j(w)+j(w)\cdot j(v)=-2q(v,w)\cdot 1_A

für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): w aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V erfüllen. Die Morphismen dieser Kategorie sind Algebrenmorphismen, die die eingebetteten Kopien von V ineinander überführen, das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi \colon (A,j)\to (B,k) erfüllt nicht nur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi(ab)=\phi(a)\phi(b) , sondern auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi(j(v))=k(v) .

Ein initiales Objekt einer Kategorie ist dadurch ausgezeichnet, dass es zu jedem anderen Objekt der Kategorie genau einen Morphismus gibt. Wenn es mehrere initiale Objekte gibt, dann sind diese isomorph. Jedes initiale Objekt $ (A,j) $ der hier betrachteten Kategorie, sofern überhaupt eins existiert, wird Clifford-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(V,Q)=A genannt. Zu jedem weiteren Paar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (B,k) der Kategorie gibt es also einen eindeutig bestimmten Algebrenmorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi \colon Cl(V,Q) \to B mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k=\varphi\circ j .

Es sei im Folgenden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V mit seiner Einbettung $ j(V)\subset Cl(V,Q) $ identifiziert, das heißt, die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j wird nicht mehr explizit erwähnt.

Konstruktion in der Tensoralgebra

In der Tensoralgebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T(V) sei das Ideal Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal I:=\mbox{span}_{T(V)}\{v\otimes w + w \otimes v + q(v,w):\;v\,, w \in V\} definiert. Dann ist der Quotient Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T(V)/\mathcal I eine Realisierung der Clifford-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(V,Q) .[2]

Spezielle Clifford-Algebren

Reelle Clifford-Algebren

Im Folgenden sei $ V\cong \mathbb {R} ^{n} $ ein n-dimensionaler Vektorraum.

  • Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V mit dem Standardskalarprodukt ausgestattet ist, so wird die dadurch erzeugte Clifford-Algebra auch mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(n,0) bezeichnet. Die Erzeugenden sind dann die kanonischen Basisvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf i_k:=\mathbf e_k , die quadratische Form, die aus dem Standardskalarprodukt induziert wird, ist die Quadratsumme der Koordinaten.
  • Ist der Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V mit der Minkowski-Form mit der Signatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (p,q) ausgestattet, so dass $ n:=p+q $ gilt. Dann ist die quadratische Form durch
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q(\vec x)=x_1^2+\dots+x_p^2-x_{p+1}^2-\dots-x_n^2
gegeben. So wird die reelle Clifford-Algebra auch mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(p,q)=Cl(p,q,\mathbb R) notiert.

Komplexe Clifford-Algebren

Zu jeder reellen Clifford-Algebra kann auch die komplexifizierte Algebra

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb \Complex l(p+q):=Cl(p,q,\mathbb R)\otimes \mathbb C

definiert werden. Diese Definition ist unabhängig vom komplexifizierten Skalarprodukt, denn auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Complex^n gibt es genau eine eindeutig bestimmte, nicht ausgeartete quadratische Form.

Eigenschaften

Graduierung

Die Abbildung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} j_- \colon V &\to Cl(V,Q)\\ v &\mapsto j_- (v) := -v \end{align}

erfüllt ebenfalls die definierende Identität $ j_{-}(v)^{2}=-Q(v) $, somit gibt es wegen der universellen Eigenschaft einen Algebrenisomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa \colon Cl(V,Q)\to Cl(V,Q) mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa(v)=-v für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v\in V und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \kappa^2=\mathrm{id} . Damit zerfällt die Clifford-Algebra in einen geraden Teil

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^0(V,Q) :=\mathrm{Kern}(\mathrm{id}- \kappa) = \mathrm{Bild}(\mathrm{id}+ \kappa)

und einen ungeraden Teil $ Cl^{1}(V,Q):=\mathrm {Kern} (\mathrm {id} +\kappa )=\mathrm {Bild} (\mathrm {id} -\kappa )\,. $

Diese Zerlegung erzeugt eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb Z_2 –Graduierung der Algebra, Produkte gerade-gerade und ungerade-ungerade ergeben gerade Elemente, Produkte gerade-ungerade ergeben ungerade Elemente. So sind Produkte mit einer geraden Anzahl von Faktoren aus V gerade, Produkte mit einer ungeraden Anzahl von Faktoren aus V ungerade.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^0(V,Q) ist eine Unteralgebra der Clifford-Algebra und wird auch als zweite Clifford-Algebra bezeichnet, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^1(V,Q) ist ein lediglich ein Modul bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^0(V,Q) .

Filtrierte Algebra

Da die Clifford-Algebra als Quotient aus der Tensoralgebra aufgefasst werden kann und die Tensoralgebra eine natürliche Filtrierung besitzt, kann auch für die Clifford-Algebra eine Filtrierung erklärt werden. Die Abbildung $ \pi _{Q}\colon T(V)\to Cl(V,Q) $ ist die natürliche Projektion von der Tensoralgebra in den Quotientenraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(V,Q) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_1(V) \subset T_2(V) \subset \cdots \subset T(V) die Filtrierung der Tensoralgebra. Setzt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl_i(V,Q) = \pi_Q(T_i(V)) so wird die Clifford-Algebra ebenfalls zu einer filtrierten Algebra.[4]

Beziehung zur orthogonalen Gruppe

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V ein Vektorraum mit nicht ausgearteter symmetrischer Bilinearform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q und $ Q(v)=q(v,v) $. In der Clifford-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(V,Q) können dann Spiegelungen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V dargestellt werden. Dazu wird eine elementare Folgerung aus der Struktur des Produkts benutzt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{vxv}{\langle v,v\rangle}=-\frac{(2\langle v,x\rangle+xv)v}{\langle v,v\rangle}=-2\frac{\langle v,x\rangle v}{\langle v,v\rangle}+x.

Ist $ v $ ein Einheitsvektor, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\langle v,v\rangle|=1 , so ist die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v\mapsto S(v) , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S(v)x:=\tfrac{vxv}{\langle v,v\rangle}=\pm vxv die Spiegelung an der zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v senkrechten Hyperebene. Jede Spiegelung ist eine orthogonale Abbildung, somit ist die von den Spiegelungen erzeugte Gruppe eine Untergruppe der orthogonalen Gruppe.

Die Pin-Gruppe

Umgekehrt lässt sich jede orthogonale Abbildung in ein Produkt aus Spiegelungen zerlegen, siehe Householdertransformation beziehungsweise QR-Zerlegung. Die Zerlegung ist nicht eindeutig, aber die Clifford-Produkte der Einheitsvektoren der Spiegelmatrizen unterscheiden sich höchstens im Vorzeichen.

Zunächst wird die Pin-Gruppe als Menge aller Produkte von Einheitsvektoren definiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \operatorname{Pin}(V):=\{v_1\dots v_k:k\in\mathbb N, v_i\in V, \langle v_i,v_i\rangle=\pm1\}.

Diese Menge ist ein Untermonoid des multiplikativen Monoids der Clifford-Algebra und wird zur Gruppe durch die Existenz eines Inversen: $ v_{1}\dots v_{k}v_{k}\dots v_{1}=\pm 1 $. Es gibt Produkte, deren Faktoren unterschiedlich sind, die aber dasselbe Element der Pin-Gruppe bezeichnen, etwa gilt für orthogonale Einheitsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): v und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): w mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q(v)=Q(w) und jedes Paar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (c,s)=(\cos\,\alpha, \sin\,\alpha)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (cv-sw)(sv+cw)=vw .

Jedoch gilt, dass jedem Element aus $ \operatorname {Pin} (V) $ genau eine orthogonale Abbildung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde S(v_1\dots v_k)(\cdot):=v_1\dots v_k(\cdot)(v_1\dots v_k)^{-1}=S(v_1)S(v_2)\dots S(v_k)(\cdot)

entspricht, deren Unabhängigkeit von der gewählten Faktorisierung aus der Eindeutigkeit des Inversen folgt. Weiter ist bekannt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde S\colon\operatorname{Pin}(V)\to O(V) surjektiv der Ordnung 2 ist, d. h. eine zweifache Überlagerung. Die Urbilder der gleichen orthogonalen Abbildung unterscheiden sich nur um das Vorzeichen.

Die Spin-Gruppe

Physikalisch und geometrisch bedeutsam ist aber eine Untergruppe der Pin-Gruppe, die Spin-Gruppe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mbox{Spin}(V):=\{v_1\dots v_{2k}\in\mbox{Pin}(V):k\in\mathbb N\}=\mbox{Pin}(V)\cap Cl^0(V)

der Produkte mit gerader Anzahl von Faktoren (aus der spielerischen Neudeutung der Spin-Gruppe als „spezielle Pin-Gruppe“ ergab sich der Begriff „Pin“-Gruppe). Von dieser ist bekannt, dass sie eine zweifache Überlagerung der speziellen orthogonalen Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): SO(V) ist, sowie dass sie, sofern die Dimension des zugrundeliegenden Vektorraumes größer als 2 ist, einfach zusammenhängend, das heißt universelle Überlagerung ist. Da die Matrixgruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): SO(n) eine Darstellung vom Gewicht 2 von $ {\mbox{Spin}}(n) $ ist, sagt man in der Physik auch, dass Darstellungen der Spin-Gruppe vom Gewicht 1 Spin-Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{1}{2} -Darstellungen der orthogonalen Gruppe seien.

Darstellungen

Eine Darstellung einer Algebra ist eine Einbettung dieser in die Algebra der Endomorphismen eines Vektorraums, also (nach Basiswahl) in eine Matrixalgebra. Dabei können die Matrizen reelle, komplexe oder quaternionische Einträge haben.

Es lässt sich zeigen, dass jede Clifford-Algebra zu einer Matrixalgebra oder der direkten Summe zweier Matrix-Algebren über den reellen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb R , den komplexen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb C oder den Quaternionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbb H isomorph ist.

Reelle Clifford-Algebra

Die Zuordnung und Dimension der reellen Clifford-Algebren tabelliert sich wie folgt:

(pq) mod 8 ω2 Cl(p,q,ℝ)
(p+q = 2m)
(pq) mod 8 ω2 Cl(p,q,ℝ)
(p+q = 2m + 1)
0 + M(2m, ℝ) 1 M(2m, ℂ)
2 M(2m−1, ℍ) 3 + M(2m−1, ℍ) ⊕ M(2m−1, ℍ)
4 + M(2m−1, ℍ) 5 M(2m, ℂ)
6 M(2m, ℝ) 7 + M(2m, ℝ) ⊕ M(2m, ℝ)

Dabei gelten die folgenden allgemeinen Isomorphien:

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(d,0)\otimes Cl(0,2)\cong Cl(0,d+2)
  • $ Cl(0,d)\otimes Cl(2,0)\cong Cl(d+2,0) $
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(p,q)\otimes Cl(1,1)\cong Cl(p+1,q+1)

Komplexe Clifford-Algebra

Die Darstellung der komplexen Clifford-Algebra ist einfacher als die der reellen. Es gilt nämlich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Complex l(n) \cong \begin{cases} M \left(2^{\frac{n}{2}},\Complex \right) & n\ \mbox{gerade}\\ M \left(2^{\frac{n-1}{2}}, \Complex\right) \oplus M \left(2^{\frac{n-1}{2}}, \Complex\right) & n\ \mbox{ungerade} \,. \end{cases}

In diesem Zusammenhang gilt die Isomorphie

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Complex l(n)\otimes M(2,\mathbb C)\cong \Complex l(n+2)\,,

die auch essentiell für den Beweis der Darstellung ist. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n gerade, so nennt man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Complex^m mit $ m=2^{\frac {n}{2}} $ der natürlichen Graduierung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^m \oplus \R^m in diesem Zusammenhang Spinor-Modul.

Niedrigdimensionale Beispiele

Die Dimension von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(p,q) als reeller Vektorraum ist 2p+q. Damit lässt sich die Clifford-Algebra durch reelle Matrizen dieser Dimension darstellen, welche die Multiplikation in der Algebra beschreiben. Diese Darstellung ist nicht minimal, d. h., es gibt Matrizen geringerer Dimension, welche das gleiche leisten, siehe [1] und die Beispiele unten.

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(1,0)\cong \Complex
hat den Generator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_1 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_1^2=-1 . Es gibt also eine komplex eindimensionale Darstellung, welche $ e_{1} $ auf die imaginäre Einheit i abbildet, und die entsprechende reell zweidimensionale.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(0,1)\cong \R\oplus \R
Der Generator ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e:=e_1 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e^2=1 . Jedes Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): a+be der Algebra kann in zwei Summanden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{1}{2}(a+b)(1+e) und $ {\tfrac {1}{2}}(a-b)(1-e) $ aufgespaltet werden. Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1+e)(1-e)=0 gilt, erhält sich diese Aufspaltung unter Produktbildung. Die Clifford-Algebra ist also isomorph zum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^2 mit komponentenweisem Produkt, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e dem Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1,-1) entspricht und das Einselement dem Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1,1) . Diese direkte Summe zweier Algebren kann auch als Algebra der 2x2-Diagonalmatrizen realisiert werden.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(2,0)\cong \mathbb H
hat die Generatoren $ i:=e_{1} $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j:=e_2 und deren Produkt k=ij mit den Relationen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i^2=j^2=-1,\;k=ij=-ji,\;ijk=k^2=-ijji=-1,\; .
Man rechnet nach, dass dies zur Algebra der Quaternionen isomorph ist.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(1,1)\cong M_2(\R)
hat die Generatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i^2=-1 , $ e^{2}=1 $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): ie=-ei . Man überzeugt sich, dass die Generatoren folgenden reellen 2x2-Matrizen entsprechen:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1=\begin{pmatrix}1&0\\0&1\end{pmatrix},\; e=\begin{pmatrix}1&0\\0&-1\end{pmatrix},\; i=\begin{pmatrix}0&-1\\1&0\end{pmatrix},\; ie=\begin{pmatrix}0&1\\1&0\end{pmatrix}
somit alle reellen Matrizen erreicht werden.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(0,2)\cong M_2(\R)
hat die Generatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_2 mit Quadrat 1, deren Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i:=e_1 e_2 hat das Quadrat $ -1 $, somit ist diese Algebra isomorph zur vorhergehenden.

Quantenphysikalisch bedeutsame Beispiele

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(3,0)\cong Cl(2,0)\otimes Cl(0,1)\cong\mathbb H\oplus\mathbb H (Biquaternionen)
hat die Erzeuger Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_1 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_2 und $ e_{3} $ mit den Relationen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\mathbf e_i)^2=-1 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf e_i\mathbf e_k=-\mathbf e_k\mathbf e_i , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\mathbf e_i\mathbf e_k)^2=-1 , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\mathbf e_1\mathbf e_2\mathbf e_3)^2=1 .
Sowohl reelle als auch komplexe Darstellungen zerfallen als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V=V_+\oplus V_- , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_+ Nullraum des Projektors $ (1-\omega )/2 $ und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_- Nullraum des Projektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (1+\omega)/2 mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega:=e_1e_2e_3 ist. Es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_k\omega=\omega e_k , so dass beide Untervektorräume voneinander unabhängige Unterdarstellungen erzeugen.
Eine rein negative Darstellung, d. h. mit $ V_{+}=0 $, ist direkt zur Quaternionen-Algebra isomorph,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_1\to i, e_2\to j, e_3\to k ,
eine rein positive ist konjugiert isomporph,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e_1\to -i, e_2\to -j, e_3\to -k .
In beiden Fällen gilt das zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(2,0,\mathbb R) gesagte.
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(2,1)\cong Cl(1,1)\otimes Cl(1,0)\cong M_2(\Complex)
  • $ Cl(1,2)\cong Cl(1,1)\otimes Cl(0,1)\cong M_{2}(\mathbb {R} )\oplus M_{2}(\mathbb {R} ) $
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(0,3)\cong Cl(0,2)\otimes Cl(1,0)\cong \mathbb H\otimes_{\mathbb R}\mathbb C
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(4,0)\cong Cl(2,0)\otimes Cl(0,2)\cong M_2(\mathbb{H})
Der gerade Teil dieser Algebra, der die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Spin_4 -Gruppe enthält, ist zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(3,0) isomorph. Er wird erzeugt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf f_1:=\mathbf e_1\mathbf e_4,\; \mathbf f_2:=\mathbf e_2\mathbf e_4\; \mathbf f_3:=\mathbf e_3\mathbf e_4 , es ist z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf e_1\mathbf e_2=\mathbf f_1\mathbf f_2 .
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(3,1)\cong Cl(1,1)\otimes Cl(2,0)\cong M_2(\mathbb{H})
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^0(3,1)\cong Cl(3,0)\cong\mathbb H\oplus\mathbb H oder
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^0(3,1)\cong Cl(2,1)\cong M_2(\Complex)
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl(1,3)\cong Cl(1,1)\otimes Cl(0,2)\cong M_4(\R)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^0(1,3)\cong Cl(0,3)\cong\mathbb H\otimes_{\mathbb R}\mathbb C oder
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Cl^0(1,3)\cong Cl(1,2)\cong M_2(\R)\oplus M_2(\R)

Literatur

  • Bartel L. van der Waerden: Algebra. 9. Auflage. Band 1. Springer, Berlin u. a. 1993, ISBN 3-540-56799-2.
  • Bartel L. van der Waerden: A history of Algebra. From al-Khwārizmī to Emmy Noether. Springer, Berlin u. a. 1985, ISBN 3-540-13610-X.
  • H. Blaine Lawson, Marie-Louise Michelsohn: Spin Geometry (= Princeton Mathematical Series. Bd. 38). Princeton University Press, Princeton NJ 1989, ISBN 0-691-08542-0.

Weblinks

Einzelnachweise

  1. William Kingdon Clifford. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.
  2. 2,0 2,1 Nicole Berline, Ezra Getzler, Michèle Vergne: Heat kernels and Dirac operators (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Bd. 298). Springer, Berlin u. a. 1992, ISBN 0-387-53340-0, S. 100.
  3. H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0-691-08542-5, S. 8f.
  4. H. B. Lawson, M.-L. Michelsohn: Spin Geometry. 1989, S. 9–10.