Breit-Rabi-Formel

Die Breit-Rabi-Formel (nach Gregory Breit und Isidor Isaac Rabi (1931)[1]) beschreibt in der Atomphysik die Hyperfeinstruktur-Aufspaltung des Wasserstoffatoms und wasserstoffähnlicher Atome (mit Valenzelektron in der s-Schale)[2] in Abhängigkeit eines externen Magnetfeldes. Ihr Nutzen besteht vor allem darin, dass sie auch im Übergangsbereich zwischen schwachen (Zeeman-Effekt) und starken Feldstärken (Paschen-Back-Effekt) quantitativ gültig ist. Dies ist beim Wasserstoffatom von besonderer Bedeutung, weil dessen Kern- und Hüllendrehimpuls schon bei geringen Flussdichten im Bereich $ B\approx 0{,}05\,\mathrm {T} $ entkoppeln.

Die Breit-Rabi-Formel ist ein Ausdruck für die Energieverschiebung eines Niveaus mit allgemeinem Kernspin $ I $ und magnetischer Quantenzahl des Gesamtdrehimpulses $ m_{F} $, jedoch einem vorgegebenen Hüllendrehimpuls $ J={\frac {1}{2}} $. Sie lautet:[3]

$ {W_{I\pm {\frac {1}{2}},m_{F}}=-{\frac {A}{2(2I+1)}}+g_{I}m_{F}\mu _{\mathrm {K} }B\pm {\frac {A}{2}}{\sqrt {1+{\frac {4m_{F}\left(g_{J}\mu _{\mathrm {B} }-g_{I}\mu _{\mathrm {K} }\right)B}{(2I+1)A}}+\left({\frac {\left(g_{J}\mu _{\mathrm {B} }-g_{I}\mu _{\mathrm {K} }\right)B}{A}}\right)^{2}}}} $

Dabei ist $ A $ die atomspezifische Hyperfeinstruktur-Kopplungskonstante, $ \mu _{\mathrm {B} } $ das Bohrsche und $ \mu _{\mathrm {K} } $ das Kernmagneton. $ g_{J} $ und $ g_{I} $ sind die Landé-Faktoren des Hüllendrehimpulses $ J $ bzw. Kernspins $ I $.

Herleitung für den Grundzustand des Wasserstoffatoms

Die Drehimpulse werden hier mit den Drehimpulsquantenzahlen beschrieben, die dem Betrag eines Drehimpulses in Einheiten des reduzierten Plancksches Wirkungsquantum $ \hbar $ entsprechen. Das Wasserstoffatoms hat einen Kernspin $ I={\frac {|{\vec {I}}|}{\hbar }}={\frac {1}{2}} $. Das einzige Elektron hat im Grundzustand ($ l=0 $) nur einen Spin-Drehimpuls, der gleichzeitig auch der gesamte Hüllendrehimpuls $ J={\frac {|{\vec {J}}|}{\hbar }}={\frac {1}{2}} $ ist. Kernspin und Hüllendrehimpuls koppeln gemäß der Drehimpulsalgebra zum Gesamtdrehimpuls $ {\vec {F}}={\vec {I}}+{\vec {J}} $. Die nun folgende Herleitung für diesen einfachsten Fall lässt sich für verschiedene Werte von $ J $ und $ I $ stark verallgemeinern. Das grundsätzliche Verfahren wird in der hier vorgestellten Form jedoch gut ersichtlich.

Der Hamiltonoperator der Hyperfeinstruktur mit einem B-Feld in z-Richtung ist:[4]

$ {\hat {H}}_{\mathrm {HFS} }=A{\frac {{\vec {I}}\cdot {\vec {J}}}{\hbar ^{2}}}+\left(g_{J}\mu _{\mathrm {B} }{\frac {J_{z}}{\hbar }}-g_{I}\mu _{\mathrm {K} }{\frac {I_{z}}{\hbar }}\right)B $

Dieser Hamilton-Operator wird nun in einer geeigneten Basis $ |JIFm_{F}\rangle $ diagonalisiert, die sich aus "guten Quantenzahlen" zusammensetzt; mit der Projektion des Drehimpulses $ {\vec {F}} $ auf die Richtung des Magnetfeldes $ m_{F}=m_{J}+m_{I} $ (magnetische Quantenzahl). Der erste Summand des obigen Hamiltonian ist in dieser Basis diagonal und lässt sich ausdrücken als

$ A{\frac {{\vec {I}}\cdot {\vec {J}}}{\hbar ^{2}}}={\frac {A}{2}}\left(F(F+1)-I(I+1)-J(J+1)\right) $

Die $ z $-Komponenten $ I_{z} $ und $ J_{z} $ lassen sich mit dem Wigner-Eckart-Theorem ebenfalls in Matrix-Form darstellen. Die Zeilen bzw. Spalten sind links bzw. oben mit Indizes versehen, die als $ (F|m_{F}) $ zu lesen sind. Abseits der Diagonalen sind fast alle Einträge null, außer denen mit $ m_{F}=0 $, die mischen.

$ {\frac {\langle JIF'm_{F}'|J_{z}|JIFm_{F}\rangle }{\hbar }}=\left({\begin{array}{c|cccc}&\left(0|0\right)&\left(1|-1\right)&\left(1|0\right)&\left(1|1\right)\\\hline \left(0|0\right)&0&0&{\frac {1}{2}}&0\\\left(1|-1\right)&0&-{\frac {1}{2}}&0&0\\\left(1|0\right)&{\frac {1}{2}}&0&0&0\\\left(1|1\right)&0&0&0&{\frac {1}{2}}\end{array}}\right) $

Analog folgt für die $ z $-Komponente des Kernspins:

$ {\frac {\langle JIF'm_{F}'|I_{z}|JIFm_{F}\rangle }{\hbar }}=\left({\begin{array}{c|cccc}&\left(0|0\right)&\left(1|-1\right)&\left(1|0\right)&\left(1|1\right)\\\hline \left(0|0\right)&0&0&-{\frac {1}{2}}&0\\\left(1|-1\right)&0&-{\frac {1}{2}}&0&0\\\left(1|0\right)&-{\frac {1}{2}}&0&0&0\\\left(1|1\right)&0&0&0&{\frac {1}{2}}\end{array}}\right) $

Addiert man alle drei einzeln in Matrix-Darstellung gebrachten Terme auf und setzt $ I=J={\frac {1}{2}} $ sowie $ g_{J}\approx 2 $ für das Wasserstoffatom ein, dann ergibt sich für den Hamiltonian:[5]

$ {\hat {H}}_{\mathrm {HFS} }=\left({\begin{array}{c|cccc}&\left(0|0\right)&\left(1|-1\right)&\left(1|0\right)&\left(1|1\right)\\\hline (0|0)&-{\frac {3A}{4}}&0&\left(\mu _{\mathrm {B} }+{\frac {g_{I}}{2}}\mu _{\mathrm {K} }\right)B&0\\(1|-1)&0&{\frac {A}{4}}-\left(\mu _{\mathrm {B} }-{\frac {g_{I}}{2}}\mu _{\mathrm {K} }\right)B&0&0\\(1|0)&\left(\mu _{\mathrm {B} }+{\frac {g_{I}}{2}}\mu _{\mathrm {K} }\right)B&0&{\frac {A}{4}}&0\\(1|1)&0&0&0&{\frac {A}{4}}+\left(\mu _{\mathrm {B} }-{\frac {g_{I}}{2}}\mu _{\mathrm {K} }\right)B\end{array}}\right) $

Die Eigenwerte dieser Matrix ergeben unter Vernachlässigung quadratischer Terme in $ \mu _{\mathrm {K} } $ für allgemeine Werte für $ I,F $ und $ m_{F} $ gerade die oben genannte Breit-Rabi-Formel.

Einzelnachweise

  1. Gregory Breit, Isidor Isaac Rabi: Measurement of Nuclear Spin. In: Physical Review Letters. Band 38, Nr. 11, November 1931, S. 2082--2083, doi:10.1103/PhysRev.38.2082.2.
  2. Florian Scheck: Quantum Physics. Springer, 2013, ISBN 978-3-642-34563-0, S. 284.
  3. Blair, B.E. and Morgan, A.H.: Frequency and Time. U.S. Government Printing Office, 1972, ISBN 978-3-642-34563-0, S. 13–14.
  4. Ingolf V. Hertel, Claus-Peter Schulz: Atome, Moleküle und optische Physik 1 – Atomphysik und Grundlagen der Spektroskopie. 1. Auflage. Springer, Berlin, Heidelberg 2008, ISBN 978-3-540-30613-9, S. 362.
  5. Ingolf V. Hertel, Claus-Peter Schulz: Atome, Moleküle und optische Physik 1 – Atomphysik und Grundlagen der Spektroskopie. 1. Auflage. Springer, Berlin, Heidelberg 2008, ISBN 978-3-540-30613-9, S. 367 ff.

en:Zeeman effect#Intermediate field for j = 1/2

Die News der letzten Tage

20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.