Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt

Physik-News vom 15.11.2022


Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen. Abhängig von ihrer Masse haben diese Sterne entweder einen weichen oder harten Kern.

Bislang ist wenig über das Innere von Neutronensternen bekannt, jene extrem kompakten Objekte, die nach dem Tod eines Sterns entstehen können: Die Masse unserer Sonne oder sogar mehr ist zusammengepresst auf eine Kugel mit dem Durchmesser einer Großstadt. Trotz jahrzehntelanger theoretischer und experimenteller Bemühungen seit ihrer Entdeckung vor mehr als 60 Jahren ist der innere Aufbau von Neutronensternen noch zum größten Teil unbekannt. Die größte Herausforderung dabei ist es, die extremen Bedingungen im Inneren dieser Sterne zu simulieren, weil diese nicht unter Laborbedingungen auf der Erde nachgestellt werden können. Deshalb existieren zurzeit viele unterschiedliche mathematische Modelle, die versuchen, die Struktur von Neutronensternen – von der Oberfläche bis hin zum inneren Kern – mit Hilfe sogenannter Zustandsgleichungen zu beschreiben.


Die Untersuchung der Schallgeschwindigkeit hat ergeben, dass schwere Neutronensterne eine harte Hülle und einen weichen Kern haben, während leichte Neutronensterne eine weiche Hülle und einen harten Kern haben - so wie unterschiedliche Schokoladenpralinen.

Publikation:


Sinan Altiparmak, Christian Ecker, Luciano Rezzolla
On the Sound Speed in Neutron Stars
The Astrophysical Journal Letters (2022)

DOI: 10.3847/2041-8213/ac9b2a



Publikation:


Christian Ecker, Luciano Rezzolla
A general, scale-independent description of the sound speed in neutron stars
The Astrophysical Journal Letters (2022)

DOI: 10.3847/2041-8213/ac8674

Physikern der Goethe-Universität Frankfurt ist es nun gelungen, dem Puzzle um das Innere dieser Sterne einen wichtigen Teil hinzuzufügen. Im Arbeitskreis von Prof. Luciano Rezzolla am Institut für Theoretische Physik haben Forscher nun mehr als eine Million dieser Zustandsgleichungen konstruiert, von denen jede einzelne mit allen astrophysikalischen Messungen von Neutronensternen und bekannten Ergebnissen aus der Kernphysik übereinstimmen.

Bei der Analyse dieser riesigen Anzahl von Zustandsgleichungen machten die Wissenschaftler eine erstaunliche Entdeckung: „Leichte” Neutronensterne (mit einer Masse kleiner als die 1.7-fache Sonnenmasse) haben einen weiche äußere Hülle und einen harten Kern, wohingegen „schwere” Sterne (mit einer Masse größer als die 1.7-fache Sonnenmasse) eine harte Hülle, aber einen weichen Kern besitzen.

„Das ist ein außerordentlich interessantes Ergebnis, weil es darüber Aufschluss gibt, wie komprimierbar der Kern eines Neutronensterns sein kann”, sagt Prof. Luciano Rezzolla, „Neutronensterne verhalten sich scheinbar ähnlich wie Schokopralinen: Leichte Sterne ähneln dabei Pralinen mit einer harten Nuss umhüllt von weicher Schokolade,“ führt er weiter aus, „Schwere Sterne sind hingegen eher wie Pralinen mit einer harten Hülle aus Schokolade und einer cremig weichen Füllung."

Eine wichtige Rolle in ihrer Analyse spielte dabei die Schallgeschwindigkeit in dichter Materie, welche der Bachelorstudent Sinan Altiparmak in seiner Abschlussarbeit ausführlich erforscht hat. Diese Größe beschreibt, wie schnell sich Schallwellen in Materie ausbreiten. Ihr Wert hängt davon ab, wie hart oder weich das Medium ist. Schallgeschwindigkeitsmessungen werden beispielsweise dazu verwendet, den inneren Aufbau unseres Planeten zu bestimmen und Erdölvorkommen ausfindig zu machen.

Den Physikern ist es außerdem gelungen weitere, bis dato unbekannte Eigenschaften von Neutronensternen zu enthüllen. Sie konnten zum Beispiel zeigen, dass Neutronensterne mit hoher Wahrscheinlichkeit und unabhängig von ihrer Masse einen Radius von nur 12 km besitzen, was in etwa dem Durchmesser von Frankfurt am Main entspricht. Autor Dr. Christian Ecker erklärt: „Unsere allumfassende numerische Studie hat uns nicht nur ermöglicht, präzise Vorhersagen für die Radien und die maximale Masse von Neutronensternen zu machen, sondern auch neue Grenzwerte für deren Verformbarkeit durch Gezeitenkräfte in Binärsystemen zu berechnen. Diese Erkenntnisse werden eine besonders wichtige Rolle dabei spielen, die zurzeit unbekannte Zustandsgleichung mit zukünftigen Gravitationswellenmessungen von Neutronensternkollisionen genauer zu bestimmen.”

Obwohl die genaue Struktur und Zusammensetzung von Neutronensternen weiterhin ein Geheimnis bleibt, lässt sich die Wartezeit bis zu deren genauer Bestimmung bestimmt mit ein oder zwei Pralinen versüßen.


Die News der letzten 14 Tage 8 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.

Mehr zu den Themen

07.02.2020
Galaxien | Kernphysik | Klassische Mechanik

Galaxien-Entstehung ohne Dunkle Materie simuliert
Erstmals haben Forscher der Universitäten Bonn und Straßburg die Bildung von Galaxien in einem Universum simuliert, das ohne Dunkle Materie auskommt.
15.11.2022
Sterne | Kernphysik

Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
22.02.2019
Relativitätstheorie | Atomphysik | Kernphysik

Der Zeit atomarer Vorgänge auf der Spur
Einen wichtigen Beitrag zur Messung ultrakurzer atomarer Vorgänge haben Physiker am Heidelberger Max-Planck-Institut für Kernphysik geliefert.
12.09.2019
Kernphysik

Anfängliche Abstoßung schließt spätere Anziehung nicht aus
Regensburger Physiker messen erstmals direkt den Übergang von einer schwachen Bindung (Physisorption) in eine starke Bindung (Chemisorption) am Beispiel eines Kohlenstoffmonoxid-Moleküls und eines Eisenatoms.
26.06.2019
Teilchenphysik | Kernphysik

Der Dunklen Materie auf der Spur
Physiker der JGU wollen Axionen über das neue Verfahren der Komagnetometrie nachweisen.
08.11.2022
Sterne | Supernovae | Kernphysik

Wenn ein Stern die Hüllen fallen lässt
Ein Stern im Bild Taube, etwa 900 Lichtjahre von der Erde entfernt: Gamma Columbae hütete eine dunkle Vergangenheit – die jetzt enthüllt wurde.
05.12.2019
Kernphysik | Quantenoptik

Mit starken Lasern zur Fusion: HZDR-Wissenschaftler wollen die Verschmelzung von Atomkernen quantenmechanisch anstoßen
Kernphysik ist üblicherweise die Domäne hoher Energien.
03.09.2019
Kernphysik | Elektrodynamik

Ein Lineal für Moleküle: Göttinger Forscher entwickeln Verfahren mit verbesserter Auflösung
Forscherinnen und Forscher der Universität Göttingen haben ein neues Verfahren entwickelt, das die speziellen Eigenschaften von Graphen nutzt, um mit fluoreszierenden (lichtemittierenden) Molekülen elektromagnetisch zu interagieren.
13.05.2019
Atomphysik | Kernphysik

Größe von Bor-Isotopen bestimmt - Forschung zwischen Kern- und Atomphysik
Arbeitsgruppe des Konstanzer Physikers Prof.
03.11.2022
Kernphysik | Quantenoptik

Weltweit erste optische Atomuhr mit hochgeladenen Ionen
Forschende haben einen neuen Typ von optischen Atomuhren realisiert und evaluiert.
24.04.2019
Kernphysik

Forscher beobachten langsamsten je gemessenen Atomzerfall
Eigentlich soll der XENON1T-Detektor tief im Untergrund Teilchen der Dunklen Materie aufspüren.
13.11.2019
Kernphysik

Neuer Ansatz bei der Suche nach Dunkler Materie
Mithilfe von Antimaterie wollen Forscher der Dunklen Materie auf die Spur kommen.
21.05.2019
Kernphysik | Geschichte der Physik

Ur-Kilogramm abgelöst - Neues Internationales Einheitensystem (SI) am 20.5.2019 in Kraft getreten
Neben Ampere, Kelvin, Mol und Co.
22.08.2019
Kernphysik | Thermodynamik

Erstmals entschlüsselt: Wie Licht 
chemische Reaktionen in Gang hält
Um Menschen weltweit klimaverträglich mit Energie zu versorgen, gilt Wasserstoff als Brennstoff der Zukunft.
26.02.2020
Kernphysik

Wie groß das Neutron ist
Die Größe von Neutronen ist nicht direkt messbar: Man kann sie nur aus Experimenten mit anderen Teilchen bestimmen.
13.05.2019
Galaxien | Kernphysik

Simulation zeigt: Es gibt Galaxien ohne Dunkle Materie
Nach dem Standardmodell der Kosmologie enthalten Galaxien große Mengen Dunkler Materie.
12.07.2019
Kernphysik | Quantenphysik

Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?
Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten?
23.10.2019
Sterne | Kernphysik

Die Alchemie von verschmelzenden Neutronensternen
Zum ersten Mal haben Astronomen ein chemisches Element identifiziert, das durch das Verschmelzen zweier Neutronensterne gebildet wurde.
12.09.2019
Kernphysik

Meilensteine auf dem Weg zur Atomkern-Uhr
Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht.
09.06.2020
Kernphysik

Isotopenmessungen an Luftfiltern belegen zivilen Hintergrund eines nicht-deklarierten nuklearen Unfalls
Studie der Leibniz Universität Hannover und der Westfälischen Wilhelms-Universität untersucht radioaktive Wolke.
29.01.2020
Kernphysik | Plasmaphysik | Quantenphysik

Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen
Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt.
25.10.2019
Kernphysik

Weiteres Puzzleteil auf der Suche nach Dunkler Materie hinzugefügt
PRISMA⁺-Wissenschaftler berichten in Science Advances über neuestes Ergebnis aus dem CASPEr-Forschungsprogramm.
14.05.2019
Teilchenphysik | Kernphysik

Ein Schritt hin zum Rechnen mit dem Zufall
Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf.
10.01.2020
Sterne | Kernphysik | Thermodynamik

Explosion oder Kollaps: Experiment über Beta-Zerfall wirft Licht auf das Schicksal von Sternen mittlerer Masse
Einer Gruppe von Wissenschaftlerinnen und Wissenschaftlern, unter ihnen mehrere vom GSI Helmholtzzentrum für Schwerionenforschung sowie der Technischen Universität Darmstadt, ist es gelungen, experimentell die Bedingungen von Kernprozessen in Materie, die zehn Millionen mal dichter und 25-mal heißer ist als im Mittelpunkt unserer Sonne, zu bestimmen.
27.06.2018
Kernphysik | Quantenoptik

Nobelium im Laserlicht
Die Größe und Form künstlich hergestellter Atomkerne mit mehr als 100 Protonen war experimentell bisher nicht direkt zugänglich.
02.11.2022
Sterne | Kernphysik

Dichter geht’s nicht - Materie in Neutronensternen
Nach schwarzen Löchern sind Neutronensterne die dichtesten Objekte in unserem Universum, wie ihr Name schon sagt, bestehen Neutronensterne zum größten Teil aus Neutronen.
02.07.2020
Kernphysik | Plasmaphysik

Sanfter Wandkontakt – das passende Szenario für ein Fusionskraftwerk
Eine aussichtsreiche Betriebsweise für das Plasma eines späteren Kraftwerks wurde jetzt an der Fusionsanlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching entwickelt.
27.05.2020
Kernphysik

Radioaktive Moleküle eignen sich als Mini-Labore
Radioaktive Moleküle eignen sich als Miniatur-Laboratorien, mit denen sich grundlegende Eigenschaften von Elementarteilchen und Atomkernen studieren lassen – das ist das Ergebnis eines Experiments, über das ein internationales Forschungskonsortium in der aktuellen Ausgabe des Wissenschaftsmagazins „Nature“ berichtet.
18.09.2019
Kernphysik | Physikdidaktik

Künstliche Intelligenz erforscht dunkle Materie im Universum
Ein Team aus Physikern und Informatikern der ETH Zürich hat einen neuen Zugang zum Problem der dunklen Materie und dunklen Energie im Universum entwickelt.
18.07.2019
Kernphysik | Thermodynamik

Chemie des kosmologischen Dunklen Zeitalters im Labor untersucht
Neue Messungen ergeben eine dramatisch höhere Häufigkeit von Heliumhydrid-Ionen im frühen Universum.
25.07.2018
Teilchenphysik | Kernphysik | Astrophysik

Material aus dem PSI hilft, Ungereimtheiten in der Urknalltheorie zu überprüfen
Kurz nach dem Urknall entstanden unter anderem radioaktive Atome des Typs Beryllium-7.
28.02.2020
Kernphysik | Elektrodynamik

Dem Rätsel der Materie auf der Spur
Forschende am Paul Scherrer Institut PSI haben eine Eigenschaft des Neutrons so genau wie noch nie vermessen.
12.02.2019
Atomphysik | Kernphysik

Rätselhafte Größe extrem leichter Calciumisotope
Ein internationales Forschungsprojekt unter Beteiligung von Kernphysikern und Kernphysikerinnen der TU Darmstadt hat erstmals in hochpräzisen Messungen die Radien extrem leichter Calciumisotope bestimmt und davon ausgehend die Theorie zur Beschreibung von Isotopenradien deutlich verbessern können.