Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Physik-News vom 20.11.2019


Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre Auflösung ist durch physikalische Prinzipien beschränkt. Strukturen können nur abgebildet werden, wenn diese räumlich eine Distanz größer als die halbe Lichtwellenlänge haben. Dies entspricht, bei blauem Licht, dann ungefähr einem Abstand von 200 Nanometern, also 200 millionstel Millimetern.


Nanopartikel aus Graphen blinken unregelmäßig, wenn sie mit Licht angeregt werden. Dies sorgt für eine höhere Auflösung in der Mikroskopie.

Publikation:


Xiaomin Liu Shih-Ya Chen Qiang Chen Xuelin Yao Márton Gelléri Sandra Ritz Sachin Kumar Christoph Cremer Katharina Landfester Klaus Müllen Sapun Parekh Akimitsu Narita Mischa Bonn
Nanographenes: ultrastable, switchable, and bright probes for super‐resolution microscopy
Angewandte Chemie (International Edition)

DOI: 10.1002/anie.201909220



Diese Grenze kann durch die sogenannte „Superresolution-Microscopy“ umgangen werden. Heute gibt es eine Reihe verschiedener solcher Verfahren. Bei der hier angewandten Mikroskopie-Technik werden fluoreszierende Partikel durch Licht zum Leuchten angeregt. Das wieder ausgesendete Licht besitzt jedoch eine leicht andere Wellenlänge, also andere Farbe, als das anregende Licht. Die Position dieser fluoreszierenden Partikel kann mit einer größeren Genauigkeit bestimmt werden als durch die Lichtwellenlänge vorgegeben: Wenn sie hierbei zufällig blinken, leuchten zwei benachbarte Partikel typischerweise nicht gleichzeitig.

Dies bedeutet, dass deren Signale sich nicht überlagern und hierdurch die Positionen der einzelnen Partikel unabhängig voneinander bestimmt werden können, die Partikel also auch bei sehr kleinen Abständen getrennt voneinander abgebildet, also „aufgelöst“ werden können. Forscherinnen und Forscher am MPI-P haben nun gezeigt, dass aus Graphen hergestellte Nanopartikel – sogenanntes „Nanographen“, welches aus einer nur eine Atomlage dicken Kohlenstoff-Schicht besteht – Eigenschaften besitzt, die ideal für diese spezielle Mikroskopie-Technik sind.

In der Vergangenheit wurden für diese Art der Mikroskopie bereits andere Materialien eingesetzt, wie Farbstoffe, sogenannte Quantenpunkte oder auch fluoreszierende Proteine. Nanographen zeigt hierbei optische Eigenschaften, die mit den besten dieser Materialien mithalten können. Zusätzlich zu seinen exzellenten optischen Eigenschaften ist Nanographen nicht toxisch und sehr klein.

Im Vergleich zu allen anderen Materialien zeichnet es sich durch die Eigenschaft aus, dass seine Blinkfrequenz unabhängig von der jeweiligen Umgebung ist. Somit kann Nanographen sowohl in Luft wie auch in wässrigen Lösungen oder anderen Lösungsmitteln verwendet werden. Nanographen kann zusätzlich modifiziert werden, damit es nur an bestimmten interessanten Stellen einer zu untersuchenden Probe haftet, z. B. an einer spezifischen Organelle in einer Zelle.

„Wir haben Nanographen mit dem goldenen Standard bei dieser Mikroskopie-Technik verglichen – dem organischen Farbstoff Alexa 647“, so Prof. Mischa Bonn, Direktor am MPI-P. „Wir konnten dabei feststellen, dass Nanographen ähnlich effizient ist wie dieser Farbstoff, also ähnlich viel des eingestrahlten Lichts in eine andere Farbe umwandeln kann, hierbei jedoch keine speziell zugeschnittenen Umgebungsbedingungen benötigt, wie dies bei Alexa der Fall ist“.

Um das am Max-Planck-Institut für Polymerforschung hergestellte Nanographen zu testen, haben die Wissenschaftler mit der Gruppe von Prof. Christoph Cremer am Institut für Molekulare Biologie (IMB) in Mainz zusammengearbeitet. Es wurde eine Glasoberfläche präpariert, die nanometergroße Risse aufwies. Hier wurden Nanographen-Partikel aufgebracht, die sich vor allem in den Rissen anlagerten. Im Vergleich mit konventioneller Mikroskopie konnten sie so zeigen, dass unter Nutzung der Graphen-Nanopartikel die Auflösung um einen Faktor 10 gesteigert werden konnte.

Die Wissenschaftler sehen die Entwicklung ihres Materials als einen wichtigen Schritt bei der Superresolution-Mikroskopie. Ihre Ergebnisse haben sie nun in dem renommierten Journal „Angewandte Chemie“ veröffentlicht.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

04.10.2019
Festkörperphysik | Quantenoptik

Wie schnell Elektronenspins tanzen: Chemiker untersuchen Wechselwirkung von Metallverbindungen und Licht
Metallverbindungen zeigen ein faszinierendes Verhalten in ihrer Wechselwirkung mit Licht, was zum Beispiel in Leuchtdioden, Solarzellen, Quantencomputern und sogar in der Krebstherapie angewendet wird.
06.11.2020
Festkörperphysik | Quantenoptik

„Schilde hoch!“ – Licht definiert seinen eigenen geschützten Weg
Wissenschaftler der Universität Rostock haben eine neue Art photonischer Schaltkreise entwickelt, in denen hochenergetische Lichtstrahlen ihren eigenen Weg definieren können – und sich dabei von äußeren Störeinflüssen abschirmen.
26.10.2018
Festkörperphysik

Unmögliches möglich machen
Multiferroika gelten als Wundermaterial für künftige Datenspeicher – sofern man ihre besonderen Eigenschaften auch bei den Betriebstemperaturen von Computern erhalten kann.
10.04.2018
Festkörperphysik

Neue Methode für Einblicke in Wechselwirkungen zwischen Molekülen / Atomar definierte Mess-Spitze
Nanowissenschaftler der WWU zeigen nun in einer im Fachmagazin „Nature Nanotechnology“ veröffentlichten Studie, wie die Strukturen organischer Moleküle mit ungeahnter Genauigkeit sichtbar gemacht werden können.
07.07.2020
Elektrodynamik | Festkörperphysik

Robuste Materialien in Schwingung versetzt
Physiker beobachten in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse.
01.02.2019
Festkörperphysik | Optik

Etiketten der Zukunft: Dresdner Physiker schreiben, lesen und radieren mit Licht
Einem Team von Physikern unter Leitung von Prof.
19.09.2019
Elektrodynamik | Festkörperphysik

Flüssigkristalline „Stromkabel“
Forscher der JGU synthetisieren neue Flüssigkristalle, die Strom gerichtet leiten können.
24.07.2018
Festkörperphysik | Quantenphysik

Neuartiger Quantenzustand in Halbleitern
Wissenschaftlerteam der Universitäten Konstanz, Paderborn und der ETH Zürich veröffentlicht in „Nature Communications“.
07.06.2018
Festkörperphysik

Saarbrücker Physiker testen selbstangetriebene Tröpfchen als Mini-Transporter
In den Lebenswissenschaften arbeiten Forscher daran, mithilfe winziger „Transportvehikel“ Arzneistoffe oder andere Moleküle in den menschlichen Körper zu schleusen.
28.01.2021
Festkörperphysik | Plasmaphysik

Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
16.08.2021
Festkörperphysik | Quantenoptik

Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
08.03.2019
Elektrodynamik | Festkörperphysik

Moiré-Effekt verändert elektronische Eigenschaften von dreilagigem Material
Elektronik auf Kunststoffbasis – was klingt wie Zukunftsmusik, kommt durch eine Entdeckung aus Marburg einen großen Schritt voran: Elektrische Eigenschaften von Metallelektroden lassen sich präzise kontrollieren, wenn ihr eine extrem dünne organische Schicht aufliegt, die aus einer einzigen Lage von Molekülen besteht.
05.07.2018
Festkörperphysik | Teilchenphysik

Neuer Weltrekord bei der direkten solaren Wasserspaltung
In einem nachhaltigen Energiesystem wird Wasserstoff als Speichermedium eine wichtige Rolle spielen.
17.12.2018
Festkörperphysik

Träge Miniroboter fliegen aus der Kurve
Forscher der Heinrich-Heine-Universität Düsseldorf (HHU) nutzen einfache, angetriebene Miniroboter, um die Bewegung kleiner aktiver Teilchen wie Bakterien in einem Medium zu studieren.
18.11.2022
Thermodynamik | Festkörperphysik

Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
03.09.2018
Festkörperphysik

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen
Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel.
02.05.2019
Atomphysik | Teilchenphysik | Festkörperphysik

Zufall hilft Forschern: Eckpfeiler der Physik muss ergänzt werden
Atomkerne und Elektronen in Festkörpern beeinflussen sich gegenseitig in ihren Bewegungen – und das nicht nur in seltenen Ausnahmefällen, wie bisher angenommen.
17.04.2018
Festkörperphysik | Plasmaphysik | Teilchenphysik

Gammastrahlungsblitze aus Plasmafäden
Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen.
08.05.2019
Festkörperphysik | Quantenoptik

Experimenteller Meilenstein: Lichtbasierter Computerchip funktioniert ähnlich wie das Gehirn
Einem internationalen Forscherteam der Universitäten Münster, Oxford und Exeter ist die Entwicklung einer Hardware gelungen, die den Weg in Richtung hirnähnliche Computer ebnen könnte: Die Nanowissenschaftler haben einen Chip hergestellt, auf dem sich ein Netz aus künstlichen Neuronen und Synapsen erstreckt, das in der Lage ist, Informationen zu „lernen“ und auf Basis dessen zu rechnen.
05.09.2019
Festkörperphysik | Quantenphysik

Garchinger Physiker fotografieren magnetische Polaronen
Garchinger Physikern gelang es erstmals, die magnetische Struktur um mobile Störstellen in einem Kristallgitter, sogenannte magnetische Polaronen, mithilfe eines Quantensimulators abzulichten.
05.11.2019
Festkörperphysik | Quantenoptik

Laser erzeugt topologischen Zustand in Graphen
Die Entdeckung neuer Methoden zur Kontrolle topologischer Aspekte von Quantenmaterialien ist ein wichtiges Forschungsfeld, da mit ihnen Materialien mit wünschenswerten Ladungs- und Spintransporteigenschaften für zukünftige Technologien entwickelt werden können.
25.05.2018
Festkörperphysik

Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
Chemiker Dr.
01.05.2020
Festkörperphysik | Quantenphysik

Der richtige Abstand für eine ideale Beziehung
Regensburger Physiker maßschneidern die Bindung von Elektron-Loch-Paaren in atomar dünnen Kristallen und erleichtern damit die Suche nach neuen Quantenmaterialien.
08.01.2021
Festkörperphysik | Teilchenphysik

Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das?
18.10.2022
Raumfahrt | Festkörperphysik

Funktionieren Kleber im Weltraum?
Allgemeiner gefragt: Ändern sich die Eigenschaften von Materialien, wenn sie sich in Schwerelosigkeit aus flüssigen Vorstufen bilden?
06.09.2022
Festkörperphysik | Klassische Mechanik

Schnellere Reibung – weniger Verschleiß
Ein scheinbar paradoxer Effekt: Reibung richtet normalerweise bei höheren Geschwindigkeiten mehr Schaden an, aber bei sehr hohen Geschwindigkeiten kehrt sich das um.
17.09.2019
Festkörperphysik | Biophysik

Happy hour für die zeitaufgelöste Kristallographie
Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten.
20.07.2021
Festkörperphysik | Thermodynamik

Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
17.07.2019
Teilchenphysik | Festkörperphysik

Hocheffiziente Solarzellen dank solidem Fundament
Die Sonne ist eine unerschöpfliche und nachhaltige Energiequelle.
29.03.2018
Festkörperphysik

Die Grenzen der Haftung
Konstanzer Physiker können in Kollaboration mit italienischen Fachkollegen zeigen, dass die Haftreibung zwischen Oberflächen völlig verschwinden kann.
03.04.2018
Festkörperphysik

Deutsch-französisches Forscherteam entdeckt „Anti-aging“ in metallischen Gläsern
Metallische Gläser unterliegen derselben natürlichen Entwicklung wie wir Menschen: sie altern.
10.02.2020
Festkörperphysik | Quantencomputer

Quantentechnologien: Neue Einblicke in supraleitende Vorgänge
Supraleiter gelten als vielversprechende Bauteile für Quantencomputer, funktionieren bisher jedoch nur bei sehr niedrigen Temperaturen.
01.07.2020
Festkörperphysik

3D-Druck auf den Mond bringen – unter Mondbedingungen geschmolzen
Die Kugeln wirken unscheinbar – doch sind sie weltweit einzigartig.
22.06.2021
Festkörperphysik | Teilchenphysik

Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik?
11.07.2017
Festkörperphysik

Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet
Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen.
06.05.2021
Festkörperphysik | Quantenphysik

Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
23.07.2018
Elektrodynamik | Festkörperphysik

Studie zu Werkstoffprüfung: Schäden in nichtmagnetischem Stahl mit Magnetismus aufspüren
Verschleiß, Korrosion, Materialermüdung – diese Abnutzungserscheinungen sind den meisten Werkstoffen gemein.
16.09.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Womit werden wir morgen kühlen - Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung
Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden als für das Heizen.
28.01.2020
Festkörperphysik

Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
Graphen wird oft als Wundermaterial der Zukunft bezeichnet.
22.11.2022
Festkörperphysik | Physikdidaktik

Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
08.07.2021
Festkörperphysik | Quantenphysik

Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
04.10.2022
Festkörperphysik | Quantenoptik

Mikroskopisch kleine Kraken aus dem 3D-Drucker
Mikroskopisch kleine Kraken aus dem 3D-Drucker: Neu entwickelte intelligente Polymere verfügen über „lebensechte“ Eigenschaften.
11.07.2019
Elektrodynamik | Festkörperphysik

Leistungsstärkere weiße OLEDs: Dresdner Physiker befreien Photonen mittels Nanostrukturen
Organische Leuchtdioden (OLEDs) haben dank intensiver Forschungsarbeiten in den letzten Jahrzehnten den Elektronikmarkt immer weiter erobert – von OLED-Handydisplays bis zu herausrollbaren Fernsehbildschirmen, die Liste der Anwendungsfelder ist lang.
29.01.2019
Festkörperphysik

Forscher der TUDresden entschlüsseln elektrische Leitfähigkeit von dotierten organischen Halbleiter
Wissenschaftler des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) an der TU Dresden haben in Kooperation mit der Stanford University (USA) und dem Institute for Molecular Science in Okazaki (Japan) wesentliche Parameter identifiziert, die die elektrische Leitfähigkeit in dotierten organischen Leitern beeinflussen.
03.04.2020
Elektrodynamik | Festkörperphysik

Den Regen für Hydrovoltaik nutzen
Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen.
05.04.2018
Festkörperphysik

Neuer Weg zu atomar dünnen Materialien
Weg mit dem Silizium: Titancarbid-Nanoplättchen aus Titansiliziumcarbid durch selektives Ätzen.
01.09.2022
Festkörperphysik | Optik

Von der Kunst, dem Licht eine andere Farbe zu geben
Rot wird nicht Grün und infrarotes Licht nicht plötzlich sichtbar, wenn man es durch einen Lichtleiter schickt.
02.02.2022
Festkörperphysik | Quantenoptik

Kühlung von Materie aus Distanz
Forschende können zwei Quantensysteme über eine Distanz von einem Meter zu einem Regelkreis verbinden: In diesem Regelkreis wird das eine Quantensystem – eine vibrierende Membran – durch das andere Quantensystem – eine Wolke von Atomen – gekühlt.
11.04.2018
Festkörperphysik

Waldbrände in Kanada sorgen für stärkste jemals gemessene Trübung der Stratosphäre über Europa
Waldbrände können die Sonneneinstrahlung in der oberen Atmosphäre noch stärker trüben als Vulkanausbrüche.
14.06.2019
Festkörperphysik | Quantenoptik

Starre Bindungen für neue Smartphone-Datenspeicher
Experimente am Röntgenlaser zeigen, wie die Datenspeicherung mit neuen Phasenwechselmaterialien noch besser und effizienter werden könnte.