Erdmagnetfeld in etwa 90 Kilometer Höhe mithilfe von künstlichen Sternen vermessen

Physik-News vom 24.10.2018


Internationale Kooperation nutzt durch Laser erzeugte künstliche Leitsterne zur Vermessung des Erdmagnetfelds in der Natriumschicht der Atmosphäre

Zwischen 85 und 100 Kilometer über der Erde befindet sich in der Mesosphäre eine Ansammlung von Natriumatomen, die Natriumschicht. In dieser Schicht können durch Laserstrahlung künstliche Sterne erzeugt werden, die Astronomen verwenden, um die Bildqualität von Teleskopen zu verbessern. Vor etwa sieben Jahren kam die Idee auf, diese künstlichen Leitsterne auch noch anders zu nutzen und zwar für die Vermessung des Erdmagnetfelds in dieser Höhe. Dies ist einer internationalen Gruppe von Wissenschaftlern nun mit großer Genauigkeit gelungen. Die Technik könnte in Zukunft auch dazu beitragen, magnetische Strukturen in der äußeren Schicht der Erde, der Lithosphäre, aufzuzeigen, das Weltraumwetter zu beobachten und elektrische Ströme in der Atmosphäre zu verfolgen.


Das Experiment auf La Palma: Der Laserstrahl (gelb) erzeugt in der Mesosphäre einen künstlichen Stern, dessen Signale von einem Teleskop (vorne links) aufgefangen werden. Laserquelle und Empfangsteleskop sind acht Meter voneinander entfernt.

Publikation:


Felipe Pedreros Bustos et al.
Remote sensing of geomagnetic fields and atomic collisions in the mesosphere
Nature Communications, 28. September 2018

DOI: 10.1038/s41467-018-06396-7



Die Erzeugung von künstlichen Sternen durch Laser ist etwa 20 Jahre alt. Ein Laserstrahl wird von der Erde aus in die Atmosphäre gerichtet. In der Natriumschicht trifft er auf Natriumatome, die das Licht des Lasers absorbieren und dann leuchten. „Die Atome scheinen in alle Richtungen. Von der Erde aus kann man die künstlichen Sterne allerdings nur mit Teleskopen erkennen, nicht mit dem bloßen Auge“, erklärt Felipe Pedreros Bustos von der Johannes Gutenberg-Universität Mainz (JGU). Der chilenische Physiker hat im Rahmen seiner Doktorarbeit vier Jahre lang an dem Projekt gearbeitet, an dem außerdem die Europäische Südsternwarte (ESO), die University of California Berkeley in den USA, das italienische Nationale Institut für Astrophysik (INAF) und die University of British Columbia in Kanada beteiligt sind.


Das Observatorium Roque de los Muchachos, auf der Kanareninsel La Palma in 2400 Meter Höhe am Hang eines erloschenen Vulkans gelegen, bietet günstige Bedingungen, um die beschriebenen Experimente durchzuführen.

Die künstlichen Leitsterne dienen als Referenz für atmosphärische Störungen. Ihr Licht wird auf der Erde von Teleskopen aufgefangen und die Daten können genutzt werden, um die Technik moderner Teleskope so auszurichten, dass sie die Bilder von astronomischen Objekten optimieren und möglichst störungsarm aufzeichnen können – eine Technik, die auf verformbaren Spiegeln beruht.

Präzessionssignal der Natriumatome gibt Aufschluss über die Stärke des Magnetfelds

Der Aufbau der Kooperationspartner zur Vermessung des Erdmagnetfelds funktioniert zunächst ähnlich. Auf der Kanareninsel La Palma befindet sich nahe dem Observatorium'>Roque-de-los-Muchachos-Observatorium eine ESO-Lasereinheit. Von hier aus wird ein Laserstrahl in die Natriumschicht gelenkt und die Atome werden angeregt und zudem spinpolarisiert. Dies bedeutet, dass sie sich zu einem großen Teil in die gleiche Richtung ausrichten. Weil sie sich in einem Magnetfeld befinden, dreht sich der „Spin“ der Atome wie bei einem Kreisel, der schief steht, der sich also nicht genau senkrecht auf der Tischoberfläche dreht – was auch als Präzession bezeichnet wird. „Die Helligkeit des Leitsterns ist maximal, wenn wir mit der Laserfrequenz diese Natrium-Präzessionsfrequenz treffen, was wir von der Erde aus beobachten“, erläutert Pedreros Bustos. „Weil die Frequenz proportional zur Stärke des Magnetfelds ist, können wir mit dieser Methode das Erdmagnetfeld vermessen.“

Der Gruppe ist es damit gelungen, eine fundamentale Technik, die im Labor gut untersucht ist, auch in der Natur anzuwenden. Sie schließt damit eine Lücke in der Vermessung des Erdmagnetfelds, indem sie den schwer zugänglichen Bereich der Mesosphäre von der Erde aus betrachtet. Magnetfelduntersuchungen erfolgen ansonsten direkt auf der Erde oder von Satelliten im Weltraum.

Ähnliche Untersuchungen hatte im Mai 2018 eine US-amerikanische Gruppe publiziert. Die jetzigen Messungen weisen allerdings eine wesentlich höhere Sensitivität auf und könnten, so die Erwartungen, mit höherer Laserenergie noch weiter verbessert werden. „Außerdem können wir atomare Prozesse in der Atmosphäre abschätzen, zum Beispiel mit welcher Häufigkeit es zu Zusammenstößen von Natrium mit anderen Atomen wie Sauerstoff oder Stickstoff kommt, das ist neu“, so Pedreros Bustos.

Anwendungen der Messtechnik mithilfe von künstlichen Leitsternen bieten sich vor allem für die Geophysik. So könnten Veränderungen in der Ionosphäre durch Sonnenwinde, die sich auf das Erdmagnetfeld auswirken, ermittelt werden. Außerdem könnten bei kontinuierlicher Beobachtung des Erdmagnetfelds in Höhen von 85 bis 100 Kilometer ozeanische Strömungen und großräumige magnetische Strukturen im oberen Mantel wahrgenommen werden.


Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

04.06.2018
Elektrodynamik

Atomare Untersuchungen verbessern Verständnis der Elektrokatalyse
Elektrokatalyse ist ein aus der Industrie nicht wegzudenkender Prozess um elektrische Energie direkt in chemische Energie umzuwandeln.
21.06.2018
Elektrodynamik | Teilchenphysik

Wärmestrahlung bei kleinsten Teilchen
Wissenschaftlern aus Greifswald und Heidelberg ist es gelungen, zeitaufgelöste Messungen der inneren Energieverteilung gespeicherter Clusteranionen durchzuführen.
27.05.2019
Sonnensysteme | Planeten | Elektrodynamik

Neue Studie bekräftigt Einfluss planetarer Gezeitenkräfte auf die Sonnenaktivität
Es ist eine der großen Fragen der Sonnenphysik, warum die Aktivität der Sonne einem regelmäßigen 11-Jahres-Rhythmus folgt.
09.10.2019
Sterne | Supernovae | Elektrodynamik

Wie entstehen die stärksten Magnete des Universums?
Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden?
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik

Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
25.04.2019
Elektrodynamik | Festkörperphysik | Quantenphysik

Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur
Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen.
19.10.2018
Elektrodynamik | Festkörperphysik

Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
Durch die Kombination von verschiedenen thermomagnetischen Effekten sind Sensoren für richtungsabhängige Temperatursensoren möglich.
20.08.2018
Raumfahrt | Elektrodynamik

IHP-Technologie darf in den Weltraum fliegen
Europäische Raumfahrtbehörde ESA zertifiziert SiGe BiCMOS Technologie.
19.03.2019
Sterne | Elektrodynamik

Kartographie eines fernen Sterns
Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns.
01.04.2021
Planeten | Elektrodynamik | Strömungsmechanik

Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
26.04.2019
Elektrodynamik | Festkörperphysik

Biegsame Schaltkreise für den 3D-Druck
Eine Forschungskooperation von Universität Hamburg und DESY hat ein 3D-Druck-taugliches Verfahren entwickelt, mit dem sich transparente und mechanisch flexible elektronische Schaltkreise produzieren lassen.
12.08.2020
Elektrodynamik | Quantenphysik | Teilchenphysik

Effizientes Ventil für Elektronenspins
Forscher der Universität Basel haben zusammen mit Kolleginnen aus Pisa ein neues Konzept entwickelt, das den Eigendrehimpuls (Spin) von Elektronen verwendet, um elektrischen Strom zu schalten.
28.02.2020
Kernphysik | Elektrodynamik

Dem Rätsel der Materie auf der Spur
Forschende am Paul Scherrer Institut PSI haben eine Eigenschaft des Neutrons so genau wie noch nie vermessen.
07.11.2018
Astrophysik | Elektrodynamik

Magnetfeld heizt Weißen Zwergen ein
Universität Tübingen an internationaler Studie beteiligt: Erstmals lässt sich erklären, warum mancher der Sternreste besonders heiß wird.
22.08.2019
Teilchenphysik | Elektrodynamik

Starke Magnetfelder mit Neutronen sichtbar machen
Forschende des Paul Scherrer Instituts PSI haben eine neue Methode entwickelt, mit der man starke Magnetfelder exakt vermessen kann.
06.05.2018
Elektrodynamik

„Elektrisierende“ Chemie unter der Lupe
Die Chemie hat eine „elektrisierende“ Zukunft: Mit der steigenden Verfügbarkeit elektrischer Energie aus erneuerbaren Quellen wird es in der Zukunft möglich sein, viele chemische Prozesse durch elektrischen Strom anzutreiben.
13.03.2018
Astrophysik | Elektrodynamik

Wie der Magnetismus ins Universum kommt
Strömungen flüssiger Metalle sind in der Lage, Magnetfelder zu generieren.
25.05.2020
Elektrodynamik | Festkörperphysik

Verlustfreie Stromleitung an den Kanten
Atomar dünne Schichten eines Halbmetalls namens Wolframditellurid leiten Strom verlustfrei entlang enger eindimensionaler Kanäle an den Rändern.
03.06.2019
Elektrodynamik | Quantenoptik

Präzises Vermessen von Magnetismus mit Licht
Die Untersuchung magnetischer Materialien mit extremer ultravioletter Strahlung ermöglicht es, ein detailliertes mikroskopisches Bild davon zu erhalten, wie magnetische Systeme mit Laserpulsen interagieren – die schnellste Möglichkeit zur Manipulation eines magnetischen Materials.
11.07.2019
Planeten | Monde | Elektrodynamik

Jupiters Polarlichter werden durch Wechselströme erzeugt
Internationales Forscherteam vermisst das Stromsystem, das die Polarlichter des Jupiters generiert / Schwefeldioxidgas vom Mond Io ist die Ursache für das Stromsystem des Gasplaneten.
05.06.2019
Elektrodynamik | Geophysik

Magnetismus im Erdmantel entdeckt
Das riesige Magnetfeld, das die Erde umgibt, sie vor Strahlen und geladenen Teilchen aus dem All schützt und an dem sich viele Tiere sogar orientieren können, ist in ständigem Wandel – weshalb es auch unter ständiger Beobachtung von Geowissenschaftlern ist.
15.04.2019
Atomphysik | Elektrodynamik | Quantenphysik

Anregungen magnetischer Valenzbindungen
Augsburger Physikern gelingt der experimentelle Nachweis fundamentaler Prozesse in Quanten-Spinflüssigkeiten.
13.01.2020
Teilchenphysik | Elektrodynamik

Untrennbarkeit von elektrischer Ladung und Spin: Scheidung in einer Dimension
Wissenschaftler am MPQ haben eine 50 Jahre alte Vermutung über die (Un)trennbarkeit von Ladung und Spin mittels der Verwendung eines Quantensimulator experimentell bestätigt.
03.04.2018
Elektrodynamik | Festkörperphysik

Ein Drittel des Sonnenlichts in Strom wandeln – 33,3 Prozent Mehrfachsolarzelle auf Siliciumbasis
Forscher des Fraunhofer-Instituts für Solare Energiesysteme ISE haben gemeinsam mit der Firma EVG eine neue Mehrfachsolarzelle auf Silicium entwickelt, mit der genau ein Drittel der im Sonnenlicht enthaltenen Energie in elektrische Energie gewandelt werden kann.
06.09.2022
Elektrodynamik | Teilchenphysik

Magnetische Skyrmionen ‒ bereit zum Abheben
Magnetische Skyrmionen sind extrem kleine und sehr stabile Magnetisierungswirbel, die häufig als „topologische Quasiteilchen“ bezeichnet werden, da ein solches Spin-Ensemble eine besondere Stabilität aufweist.
07.03.2019
Elektrodynamik | Thermodynamik

Ein Thermofühler für magnetische Bits
Neues Konzept zur energieeffizienten Datenverarbeitung.
21.07.2020
Astrophysik | Elektrodynamik

Neue kosmische Magnetfeldstrukturen in Galaxie NGC 4217 entdeckt
Spiralgalaxien wie unsere Milchstraße können weit ausgedehnte Magnetfelder besitzen.
15.09.2018
Elektrodynamik | Teilchenphysik

Schaltung des Stromflusses auf atomarer Skala
Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.
14.07.2020
Elektrodynamik | Quantenoptik | Teilchenphysik

Hammer-on – wie man Atome schneller schwingen lässt
Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben.
26.09.2018
Elektrodynamik

Höchste Taktraten lassen Elektronik kalt
nternationales Physiker-Team kombiniert Lichtwellen-Elektronik mit topologischen Isolatoren.
02.03.2020
Sterne | Elektrodynamik

Kugelsternhaufen flattern im galaktischen Wind
Das Magnetfeld der Milchstraße spielt eine wichtige Rolle bei der Entwicklung unserer Galaxie, wobei man allerdings noch sehr wenig über seine Struktur auf kleinen Größenskalen weiß und, ob es sich in den Halo der Milchstraße fortsetzt.
21.02.2019
Elektrodynamik | Thermodynamik | Festkörperphysik

Wie man Wärmeleitung einfriert
An der TU Wien wurde ein physikalischer Effekt entdeckt, der elektrisch leitende Materialien mit extrem niedriger Wärmeleitfähigkeit ermöglicht.
09.06.2020
Elektrodynamik | Teilchenphysik

Momentaufnahmen von explodierendem Sauerstoff
Neue Experimentiertechnik mit Reaktionsmikroskop der Goethe-Universität ermöglicht das „Röntgen“ einzelner Moleküle.
25.09.2019
Elektrodynamik | Strömungsmechanik

Weltweit erste Validierung der Aerodynamik von großen Windenergieanlagen
Weltweit zum ersten Mal prüft das Fraunhofer IWES die Aerodynamik für Windenergieanlagen mit einer Nennleistung von mehr als fünf Megawatt (MW).
21.12.2020
Elektrodynamik | Teilchenphysik

Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
24.02.2020
Teilchenphysik | Elektrodynamik | Festkörperphysik

Elektronenbeugung zeigt winzige Kristalle in neuem Licht
Um die biologischen Funktionen von Proteinen, den Bausteinen des Lebens, zu verstehen, ist es unerlässlich, ihre Struktur zu erforschen.
21.12.2020
Elektrodynamik | Teilchenphysik

Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
27.04.2020
Elektrodynamik | Quantenphysik

Experiment zur Quantenelektrodynamik
Die fundamentalen Gesetze der Physik basieren auf Symmetrien, die unter anderem die Wechselwirkungen zwischen geladenen Teilchen bestimmen.
26.06.2019
Elektrodynamik | Plasmaphysik | Festkörperphysik

Ein Blitz unter Wasser
Elektrochemische Zellen helfen unter anderem dabei, CO2 zu recyceln.
07.10.2020
Atomphysik | Elektrodynamik

Experimenteller Nachweis von Trägheitsbewegungen in magnetischen Materialien
Ein internationales Team aus Deutschland, Italien, Schweden und Frankreich berichtet von der experimentellen Beobachtung eines zwar zuvor bereits vorhergesagten, bislang allerdings nur schwer nachweisbaren Trägheitseffekts von Elektronenspins in magnetischen Materialien.
22.05.2018
Elektrodynamik | Festkörperphysik | Quantenoptik

Faserlaser mit einstellbarer Wellenlänge
Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie.
30.06.2017
Astrophysik | Elektrodynamik | Quantenphysik | Teilchenphysik

Atom- und Molekülspektren im extremen Magnetfeld von Weißen Zwergen werden berechenbar
Neue quantenchemische Methode schafft Grundlagen zur Identifikation von Atomen und Molekülen im Magnetfeld von Weißen Zwergen.
28.11.2021
Elektrodynamik | Optik

holographische Videotechnologie
Videokonferenzen haben in der Pandemie den Arbeitsalltag bestimmt und werden auch künftig eine größere Rolle spielen.
16.07.2018
Elektrodynamik | Festkörperphysik

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen
„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin.
17.08.2017
Elektrodynamik | Quantenphysik

Quantenmagnete mit Löchern
MPQ-Wissenschaftler decken verborgene magnetische Ordnung in eindimensionalen, mit Löchern dotierten Quantenkristallen auf.
14.01.2020
Milchstraße | Atomphysik | Elektrodynamik

Heißes Gas füttert die Spiralarme der Milchstraße
Ein internationales Forschungsteam, mit wesentlicher Beteiligung von Astronomen des Max-Planck-Instituts für Astronomie (MPIA), hat wichtige Erkenntnisse darüber gewonnen, woher das Material in den Spiralarmen der Milchstraße stammt, aus dem sich letztendlich neue Sterne formen.
11.07.2019
Elektrodynamik | Festkörperphysik

Leistungsstärkere weiße OLEDs: Dresdner Physiker befreien Photonen mittels Nanostrukturen
Organische Leuchtdioden (OLEDs) haben dank intensiver Forschungsarbeiten in den letzten Jahrzehnten den Elektronikmarkt immer weiter erobert – von OLED-Handydisplays bis zu herausrollbaren Fernsehbildschirmen, die Liste der Anwendungsfelder ist lang.
20.06.2018
Elektrodynamik | Festkörperphysik

Radar verschafft Durchblick in der Robotik
Mit seiner Radar-on-Chip-Technologie hat das Fraunhofer FHR die Vorteile von Radar nun auch für die Robotik nutzbar gemacht und das im EU-Projekt Smokebot bewiesen.
19.09.2019
Elektrodynamik | Festkörperphysik

Flüssigkristalline „Stromkabel“
Forscher der JGU synthetisieren neue Flüssigkristalle, die Strom gerichtet leiten können.
11.08.2020
Astrophysik | Elektrodynamik | Klassische Mechanik

Klein und agil im All
UWE-4, der Experimentalsatellit der Uni Würzburg, hat mit seinem Elektro-Antrieb neue Maßstäbe gesetzt: In einer weltweiten Premiere für Kleinst-Satelliten hat er seine Umlaufbahn gezielt verändert.