Attosekunden-Stoppuhr für Kristalle

Physik-News vom 12.10.2022


Physikerinnen und Physiker vermessen die Dynamik beweglicher Elektronen in Festkörpern mit noch nie erreichter Zeitauflösung.

Durch die Innenstadt zu fahren dauert erfahrungsgemäß länger, als dieselbe Distanz über eine freie Landstraße zurückzulegen. Schließlich begegnet man innerorts vielen anderen Verkehrsteilnehmern, roten Ampeln, Baustellen oder Staus. Möchte man umgekehrt he-rausfinden, wie dicht eine Straße befahren ist, ohne sich selbst in den Verkehr einzureihen, kann man die Zeit messen, die Autos für eine bestimmte Wegstrecke benötigen. Genau so werden Verkehrsbehinderungen von modernen Navigationssystemen identifiziert. Auch im Mikrokosmos sollte dieses Konzept funktionieren. Wenn sich Elektronen (die kleinstmöglichen Ladungsträger) durch Festkörper bewegen, können sie mit anderen Elektronen interagieren, wodurch sich ihre Dynamik ändert. Aufgrund der winzigen Elektronenmasse, laufen die relevanten Vorgänge aber unvorstellbar schnell ab.


Durch Lichtfelder können Elektronen und Löcher durch Festkörper beschleunigt werden. Bei der Kollision der Ladungsträger wird Licht emittiert. Durch zeitliche Vermessung können Rückschlüsse auf Vielteilchen-Korrelationen im Kristall gezogen werden. Brad Baxley

Publikation:


J. Freudenstein, M. Borsch, M. Meierhofer, D. Afanasiev, C. P. Schmid, F. Sandner, M. Liebich, A. Girnghuber, M. Knorr, M. Kira, R. Huber
Attosecond clocking of correlations between Bloch electrons
Nature (2022)

DOI: 10.1038/s41586-022-05190-2



Einer Gruppe von Physikerinnen und Physikern um Prof. Dr. Rupert Huber vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg und Prof. Dr. Mackillo Kira vom Department of Electrical Engineering and Computer Science an der University of Michigan, USA, ist es nun erstmals gelungen, die ultraschnelle Bewegung freier Elektronen in Festkörpern mit der aberwitzigen Präzision von nur wenigen Hundert Attosekunden zu verfolgen. Diese Auflösung reicht aus, um kleinste Änderungen in der Dynamik von Elektronen durch Anziehung anderer Ladungsträger oder komplexe Vielteilchenkorrelationen zu untersuchen. Über die Ergebnisse berichtet das Forschungsteam in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature.

Eine Attosekunde entspricht dem milliardsten Bruchteil einer Milliardstel Sekunde – sie verhält sich zu einer Sekunde wie eine Sekunde zum doppelten Alter des Universums. Selbst Licht würde in einer Attosekunde lediglich eine Wegstrecke von der Größenordnung eines Atomdurchmessers zurücklegen. Um die Bewegung von Elektronen auf derart kurzen Zeitskalen zu vermessen, entwickelten die Forscherinnen und Forscher eine neuartige Attosekunden-Stoppuhr. Als Unruh dient die schwingende Trägerwelle von Licht – das schnellste vom Menschen kontrollierbare Wechselfeld überhaupt. Das Lichtfeld bringt die Ladungsträger regelrecht auf eine Teststrecke durch den Festkörper. Es beschleunigt Elektronen in Halbleiterproben erst in eine Richtung, um sie nach Umpolen der Feldrichtung anschließend mit den Lücken, von denen sie entfernt wurden, sogenannten Löchern, zu rekollidieren. Dabei wird Licht emittiert. Die Kollisionen laufen nicht immer gleich wahrscheinlich ab, sondern hängen davon ab, zu welchem Zeitpunkt des beschleunigenden Lichtfeldes ein Elektron seine Bewegung beginnt.

Die Forscherinnen und Forscher vermaßen diesen Kollisionspfad zeitlich genauer als ein Hundertstel Bruchteil einer Lichtschwingungsperiode und konnten so zeigen, wie unterschiedlich starke Anziehung zwischen Ladungsträgern ihre Dynamik verändert. „Genau wie man selbst bei dichtem Verkehr lieber früher losfahren sollte, um noch rechtzeitig ans Ziel zu gelangen, müssen Elektronen ihren Kollisionskurs früher starten, wenn es in einem Kristall viele und starke Begegnungen zwischen Elektronen gibt“, erklärt Erstautor Josef Freudenstein vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg begeistert.

Um den Einfluss verschieden starker Anziehungskräfte zwischen Ladungsträgern zu untersuchen, haben die Forscherinnen und Forscher neben einer Volumenprobe des Halbleitermaterials Wolframdiselenid eine einzelne Atomschicht des selben Materials untersucht. In einem solchen minimal dicken exotischen Festkörper erhöht sich die Anziehung zwischen den Ladungsträgern um ein Vielfaches und die Bewegung der Elektronen verändert sich. Außerdem konnten noch weitere maßgeblich bestimmende Größen für die Dynamik der Ladungsträger untersucht werden: Wird das beschleunigende Lichtfeld verstärkt, vollenden Elektronen ihren Kollisionskurs schneller. Das gleiche Resultat wird auch beobachtet, wenn viele Elektronen zeitgleich ihre Bewegung starten. Dann schirmen sie sich gegenseitig ab und die Ladungsträger sehen nur noch schwache Anziehungskräfte.

Aus der Zeit, die Elektronen benötigen um ihre Teststrecke zu absolvieren, lässt sich also nicht nur erschließen, dass Interaktion stattgefunden hat, sondern auch wie. „Auf der Attosekundenzeitskala lassen sich Wechselwirkungseffekte nicht mehr mit den Gesetzen der klassischen Physik erklären sie sind vielmehr rein quantenmechanischer Natur. Direkt in der Zeitdomäne zu verfolgen, wie sie die Bewegung der Elektronen beeinflussen, ist immens hilfreich, um modernste Vielteilchen-Quantentheorien zu testen“, erläutert Prof. Dr. Mackillo Kira, dessen Gruppe die mikroskopische Dynamik mit quantenmechanischen Rechnungen simulieren konnte.

„Lange war die vorherrschende Meinung, dass die viel langsamere Femtosekunden-Zeitskala ausreicht, um festkörperrelevante Elektronendynamik zu beschreiben; diese Hypothese konnten wir klar widerlegen“, bilanziert Prof. Dr. Rupert Huber, der die Experimente in Regensburg leitet, und ergänzt: „Unsere Attosekunden-Stoppuhr könnte gute Dienste dabei leisten, Vielteilchenkorrelationen in modernen Quantenmaterialien besser zu verstehen und neue Trends für künftige Quanteninformationsverarbeitung zu setzen.“



Die News der letzten 14 Tage 11 Meldungen

28.11.2022
Elektrodynamik | Festkörperphysik
Wie man Materialien durchschießt, ohne etwas kaputt zu machen
Wenn man geladene Teilchen durch ultradünne Materialschichten schießt, entstehen manchmal spektakuläre Mikro-Explosionen, manchmal bleibt das Material fast unversehrt.
25.11.2022
Sonnensysteme | Astrophysik
Im dynamischen Netz der Sonnenkorona
In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes.
25.11.2022
Exoplaneten | Astrophysik
Rätselraten um einen jungen Exo-Gasriesen
Eine Foschergruppe hat einen Super-Jupiter um den sonnenähnlichen Stern HD 114082 entdeckt, der mit einem Alter von 15 Millionen Jahren der jüngste Exoplanet seiner Art ist.
24.11.2022
Teilchenphysik | Festkörperphysik | Quantenphysik
Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen
Physiker haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter.
23.11.2022
Festkörperphysik | Quantenoptik
Lichtstrahlen beim Erlöschen zusehen
Ein Forschungsteam konnte erstmals messen, wie das Licht eines Leuchtzentrums in einem Nanodraht nach dessen Anregung durch einen Röntgenpuls abklingt.
22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.

26.02.2019
Thermodynamik | Festkörperphysik

Energiereiche Festkörperbatterie: Hohe Energiedichte mit Lithium-Anode und Hybridelektrolyt
Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt.
03.05.2018
Astrophysik | Festkörperphysik

Zwergdünen schreiben Klimageschichte
Bläst der Wind Sandkörner durch die Wüste, entstehen zentimeterkleine Rippel und gewaltige Dünen.
22.09.2022
Festkörperphysik | Quantenphysik | Teilchenphysik

Kernstück für einen skalierbaren Quantencomputer
Millionen von Quantenbits sind nötig, damit Quantencomputer sich in der Praxis als nützlich erweisen, die sogenannte Skalierbarkeit gilt als eine der größten Herausforderungen bei der Entwicklung.
02.10.2019
Festkörperphysik

Biobasierte Carbonfasern – Nachhaltige Hochleistung für den Leichtbau
Carbonfasern werden aus polymeren faserförmigen Vorläufermaterialien hergestellt, den Präkursoren.
08.06.2020
Festkörperphysik

Erste globale Karte der Felsstürze auf dem Mond
136610 Gesteinsabgänge zeigt die erste globale Karte von Felsstürzen auf dem Mond – und dass selbst die ältesten Landschaften dort noch immer im Wandel sind.
08.05.2019
Festkörperphysik | Quantenoptik

Experimenteller Meilenstein: Lichtbasierter Computerchip funktioniert ähnlich wie das Gehirn
Einem internationalen Forscherteam der Universitäten Münster, Oxford und Exeter ist die Entwicklung einer Hardware gelungen, die den Weg in Richtung hirnähnliche Computer ebnen könnte: Die Nanowissenschaftler haben einen Chip hergestellt, auf dem sich ein Netz aus künstlichen Neuronen und Synapsen erstreckt, das in der Lage ist, Informationen zu „lernen“ und auf Basis dessen zu rechnen.
10.02.2020
Festkörperphysik | Quantencomputer

Quantentechnologien: Neue Einblicke in supraleitende Vorgänge
Supraleiter gelten als vielversprechende Bauteile für Quantencomputer, funktionieren bisher jedoch nur bei sehr niedrigen Temperaturen.
17.07.2019
Teilchenphysik | Festkörperphysik

Hocheffiziente Solarzellen dank solidem Fundament
Die Sonne ist eine unerschöpfliche und nachhaltige Energiequelle.
15.06.2021
Festkörperphysik | Quantenphysik | Teilchenphysik

Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
21.04.2022
Festkörperphysik | Klassische Mechanik | Quantenoptik

Licht-Motoren für Mikrodrohnen
Mikrometergroße Drohnen nur mit Licht anzutreiben und präzise zu steuern: Das ist Physikern der Universität Würzburg erstmals gelungen.
22.11.2018
Astrophysik | Festkörperphysik

TU Berlin: Keramiken aus dem „Sand“ des roten Planeten
Wissenschaftler der TU Berlin fertigen erstmals komplexe geometrische Formen aus simuliertem Marsboden.
03.04.2018
Festkörperphysik

Deutsch-französisches Forscherteam entdeckt „Anti-aging“ in metallischen Gläsern
Metallische Gläser unterliegen derselben natürlichen Entwicklung wie wir Menschen: sie altern.
06.08.2018
Festkörperphysik

Mit Elektronenstrahlstrukturierung zu höchstauflösenden OLED-Vollfarbdisplays
OLED-Mikrodisplays etablieren sich zunehmend für den Einsatz in künftigen Wearables und Datenbrillen.
16.05.2018
Elektrodynamik | Festkörperphysik

Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar
Die Photovoltaik (PV) ist eine der Hauptsäulen einer nachhaltigen Energieversorgung auf Basis erneuerbarer Energien.
08.03.2019
Elektrodynamik | Festkörperphysik

Moiré-Effekt verändert elektronische Eigenschaften von dreilagigem Material
Elektronik auf Kunststoffbasis – was klingt wie Zukunftsmusik, kommt durch eine Entdeckung aus Marburg einen großen Schritt voran: Elektrische Eigenschaften von Metallelektroden lassen sich präzise kontrollieren, wenn ihr eine extrem dünne organische Schicht aufliegt, die aus einer einzigen Lage von Molekülen besteht.
19.10.2018
Elektrodynamik | Festkörperphysik

Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
Durch die Kombination von verschiedenen thermomagnetischen Effekten sind Sensoren für richtungsabhängige Temperatursensoren möglich.
09.09.2019
Festkörperphysik

Stuttgarter Physiker weisen erstmals zweifelsfrei einen Suprafestkörper nach
Suprafestkörper (im englischen supersolids) beschreiben einen Aggregatszustand, den man vereinfacht als fest und flüssig zugleich beschreiben kann.
24.04.2019
Elektrodynamik | Festkörperphysik

Frustrierte Materialien unter Hochdruck
Nicht nur Menschen leiden ab und an unter Frust.
02.09.2022
Planeten | Festkörperphysik | Quantenoptik

Mit Laserblitzen das Innere von Eisplaneten simuliert
Was geht im Zentrum von Planeten wie Neptun und Uranus vor?
24.08.2018
Festkörperphysik

Die saubersten Wassertropfen der Welt
Welche Effekte verursacht Wasser auf extrem sauberen Oberflächen?
09.07.2020
Festkörperphysik | Quantenphysik

Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
Verlustfreie Stromleitung bei Raumtemperatur?
03.04.2018
Festkörperphysik | Quantenphysik

Von der Quantenebene zur Autobatterie
Neue Entwicklungen brauchen neue Materialien.
04.06.2019
Elektrodynamik | Festkörperphysik

Neues Material mit magnetischem Formgedächtnis
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben ein neues Material entwickelt, dessen Formgedächtnis durch Magnetismus aktiviert wird.
18.10.2018
Festkörperphysik

Nanokäfige im Labor und im Computer
Nanokäfige sind hochinteressante molekulare Strukturen mit Hohlräumen, die z.
18.09.2018
Festkörperphysik

Unordnung kann Batterien stabilisieren
Neuartige Materialien können Speicherkapazität und Zyklenfestigkeit von wiederaufladbaren Batterien wesentlich verbessern.
24.09.2019
Elektrodynamik | Festkörperphysik

Elastische Nano-Schichten für bessere Li-Ionen-Akkus
An der TU Wien wurde eine Messmethode entwickelt, durch die es nun möglich werden soll, die Speicherkapazität von Lithium-Ionen-Akkus deutlich zu vergrößern.
30.06.2017
Festkörperphysik

TU Ilmenau und Physikalisch-Technische Bundesanstalt entwickeln neue Waage für das neue Kilogramm
Wenn nächstes Jahr, 2018, das Kilogramm neu definiert wird, werden die Technische Universität Ilmenau und die Physikalisch-Technische Bundesanstalt die Waage entwickelt haben, die nötig ist, um es zu messen: die Planck-Waage.
03.09.2018
Festkörperphysik

Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen
Wenn Bauteile in der Industrie rückstandslos hin und her bewegt werden, ist Haftung im Spiel.
09.10.2018
Astrophysik | Festkörperphysik

Der Zusammensetzung von Planeten auf der Spur
UZH-Forschende haben statistisch die Zusammensetzung und Struktur von weit entfernten Exoplaneten samt ihrer Atmosphären analysiert.
15.01.2019
Festkörperphysik | Plasmaphysik

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern
Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt.
07.07.2020
Elektrodynamik | Festkörperphysik

Robuste Materialien in Schwingung versetzt
Physiker beobachten in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse.
09.02.2021
Festkörperphysik

Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen.
27.04.2020
Festkörperphysik

Supraleitung: Der Wasserstoff ist schuld
Nickel soll ein neues Zeitalter der Supraleitung einläuten – das gestaltet sich allerdings schwieriger als gedacht.
04.11.2020
Festkörperphysik | Teilchenphysik

Neue Einblicke in die Entstehung und den Zerfall atomarer Cluster
Atomare Cluster sind Ansammlungen von wenigen Atomen des gleichen Elementes oder auch von Atomen weniger unterschiedlicher Elemente. Unter welchen Bedingungen bilden sich atomare Cluster?
16.07.2018
Elektrodynamik | Festkörperphysik

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen
„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin.
22.04.2020
Elektrodynamik | Festkörperphysik | Quantenphysik

Studie zum Quantenphasen-Übergang im Josephson-Kontakt
Ein deutsch-französisches Forscherteam hat den Stromfluss von Cooper-Elektronenpaaren in Josephson-Kontakten untersucht.
16.12.2019
Elektrodynamik | Festkörperphysik

Metall mit ungewöhnlichen Eigenschaften
Eine chinesisch-deutsche Forschungskooperation mit Beteiligung der Universität Augsburg hat bei einem Metall Eigenschaften nachgewiesen, die sich mit gängigen physikalischen Theorien nicht erklären lassen.
11.11.2019
Thermodynamik | Festkörperphysik

Effizienz-Weltrekord für organische Solarmodule aufgestellt
in Forscherteam aus Nürnberg und Erlangen hat eine neue Bestmarke für die Umwandlungseffizienz von organischen Photovoltaikmodulen (OPV) gesetzt.
15.02.2021
Festkörperphysik | Teilchenphysik

Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
04.07.2019
Thermodynamik | Festkörperphysik

Abstimmung der Energieniveaus von organischen Halbleitern
Physiker des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Tübingen, Potsdam und Mainz zeigen, wie elektronische Energien in organischen Halbleiterfilmen durch elektrostatische Kräfte eingestellt werden können.
26.02.2018
Festkörperphysik

Sonnenkonzentrat aus der Folie
Bisher sind es nur Zukunftsvisionen: Farbige Hausfassaden etwa, die auch bei miesem Wetter Sonnenstrom produzieren, oder Elektroautos, die ihre Batterien selbst im Schatten mit solaren Ampères laden können.
01.06.2018
Festkörperphysik | Optik

Rätsel um mit Licht angeregtes Graphen gelöst
Fortschritt in der Entwicklung von Lichtsensoren auf Graphenbasis.
07.01.2019
Festkörperphysik

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis
Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch maximalen Wirkungsgrad an, der mit Silicium als alleinigem Absorbermaterial erreicht werden kann.
07.05.2020
Festkörperphysik

Neue Messmethode hilft, Physik der Hochtemperatur-Supraleitung zu verstehen
Von einer nachhaltigen Energieversorgung bis hin zu Quantencomputern: Hochtemperatur-Supraleiter könnten unsere heutige Technik revolutionieren.
05.09.2019
Festkörperphysik | Quantenphysik

Garchinger Physiker fotografieren magnetische Polaronen
Garchinger Physikern gelang es erstmals, die magnetische Struktur um mobile Störstellen in einem Kristallgitter, sogenannte magnetische Polaronen, mithilfe eines Quantensimulators abzulichten.
30.01.2020
Festkörperphysik | Quantenphysik

Ein Quantum Festkörper
Forscher in Österreich bringen mithilfe eines Lasers ein Nanoteilchen aus Glas zum Schweben und kühlen es erstmals bis in das Quantenregime.
22.06.2021
Festkörperphysik | Teilchenphysik

Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik?
06.11.2019
Elektrodynamik | Festkörperphysik

Auf dem Weg zu intelligenten Mikrorobotern
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben eine Mikromaschine entwickelt, die unterschiedliche Aktionen ausführen kann.
03.06.2019
Festkörperphysik | Optik | Quantencomputer

Mit Licht kontrollierte neuartige Supraleiter könnten zukünftige Quantencomputer ermöglichen
Eine der zentralen Herausforderungen der Physik ist die Kontrolle der Quanteneigenschaften von Materialien.
11.05.2018
Festkörperphysik | Teilchenphysik

Physiker haben den Dreh mit den zweidimensionalen Kristallen raus
Regensburger Physiker untersuchen in einem internationalen Team atomar dünne Heterostrukturen.