Nizza-Modell

Eine Simulation nach dem Nizza-Modell, die die äußeren Planeten und den Kuipergürtel zeigt:
a) vor der Jupiter/Saturn-2:1-Resonanz, b) Zerstreuung der Objekte des Kuipergürtels in das Sonnensystem, nachdem sich die Umlaufbahn Neptuns verschoben hatte, c) nach dem Ausstoß von Objekten des Kuipergürtels durch Jupiter

Das Nizza-Modell (englisch Nice model, Aussprache: [ˈniːs], nach der Stadt Nizza, wo es am Observatoire de la Côte d’Azur entwickelt wurde) ist ein Modell für eine späte Migration der Planeten im Sonnensystem, das 2005 von R. Gomes, H. F. Levison, A. Morbidelli und K. Tsiganis (in alphabetischer Reihenfolge) in drei Nature-Artikeln vorgeschlagen wurde. Das Modell kann etliche Eigenschaften des Sonnensystems vorhersagen.

Das Modell

Position der Riesenplaneten in Abhängigkeit von der Zeit. Man erkennt die Instabilitätsphase, ausgelöst durch die 2:1-MMR (gestrichelte Linie), und das Vertauschen von Uranus und Neptun.

Das Modell beschreibt eine Migration der Planeten, nachdem sich die protoplanetare Gasscheibe aufgelöst hat. Es ist also kein Migrationsmodell im engeren Sinne wie etwa das Grand-Tack-Modell. Das Nizza-Modell nimmt an, dass die Planeten ursprünglich auf nahezu kreisförmigen, kompakten Bahnorbits liefen. Außerdem nimmt es an, dass bei der Planetenentstehung eine Scheibe von Planetesimalen entstand, die von außerhalb der Planetenorbits bis hinaus zu einer Entfernung von 35 AU reichte und eine Gesamtmasse von etwa 35 Erdmassen hatte.

Die Riesenplaneten des Sonnensystems streuen nun zunächst vereinzelt Planetesimale aus der Scheibe. Dabei wird Drehimpuls übertragen, und die Bahnen der Planeten ändern sich leicht. Mit numerischen Simulationen kann gezeigt werden, dass dadurch Saturn, Uranus und Neptun langsam nach außen wandern und Jupiter nach innen.

Nach ein paar hundert Millionen Jahren (500–800 Mio. Jahre nach Entstehung der Sonne) kommt es zu einer 2:1-Resonanz (englisch mean motion resonance, MMR) zwischen Jupiter und Saturn. Dadurch steigen die Exzentrizitäten, und das System destabilisiert sich. Die Planeten Saturn, Uranus und Neptun kommen einander und der Scheibe aus Planetesimalen nahe. Dadurch werden die Planetesimale praktisch schlagartig zerstreut, ein Teil der Planetesimale fliegt in das innere Planetensystem und löst dort das Große Bombardement aus. In etwa 50 Prozent der simulierten Modelle kommt es dabei auch zu einem Platzwechsel zwischen den zwei äußersten Gasplaneten Uranus und Neptun (siehe die Grafik rechts).[1] Nach etwa hundert Millionen Jahren erreichen die Planeten schließlich ihre heutigen Entfernungen, ihre Exzentrizitäten werden gedämpft und das System stabilisiert sich wieder.

Neben den Positionen, Exzentrizitäten und Inklinationen der Riesenplaneten und dem großen Bombardement erklärt das Modell noch eine Reihe weitere Eigenschaften des heutigen Sonnensystems:

  • Während der globalen Instabilität sind die Co-Orbit-Regionen von Jupiter gravitativ offen. Die gestreuten Planetesimale können in dieser Zeit in diese Regionen beliebig hinein und wieder heraus fliegen. Am Ende der Instabilitätsphase sind die Regionen vergleichsweise plötzlich wieder gravitativ geschlossen, und die Objekte, die zu diesem Zeitpunkt dort waren, sind gefangen. Dies erklärt die Jupiter-Trojaner und Hilda-Asteroiden. Analoges gilt auch für die Trojaner von Neptun. Das Modell stimmt in allen wesentlichen Eigenschaften der Trojaner – bis auf deren große Inklinationen – überein.
  • Saturn, Uranus und Neptun kamen einander und den Planetesimalen während der globalen Instabilität nahe, daher sind Dreifachstöße zwischen zwei Planeten und einem Planetesimal vergleichsweise wahrscheinlich. Bei solchen Begegnungen wird der Planetesimal von einem der beiden Planeten eingefangen und umkreist diesen fortan als Mond. Da es keine Notwendigkeit gibt, dass der Mond den Planeten in der Äquatorialebene umkreisen sollte, erhält man einen bei den äußeren Planeten häufig vorkommenden irregulären Mond. Dadurch können prinzipiell die irregulären Monde der Riesenplaneten bis auf die des Jupiters erklärt werden. Die Voraussagen stimmen bezüglich Inklination, Exzentrizität und großer Halbachse mit den Beobachtungen überein. Die zunächst vorhergesagte Massenverteilung der Planeten entspricht nicht der gemessenen; dies lässt sich jedoch erklären, wenn man annimmt, dass es zu Kollisionen zwischen den irregulären Monden gekommen ist.
  • 99 % der Masse der Planetesimalscheibe geht durch die Stöße verloren – die verbleibenden Körper hingegen bilden den Kuipergürtel. Dabei ist das Modell in der Lage, alle wichtigen Eigenschaften des Kuipergürtels zu erklären, was davor noch keinem Modell gleichzeitig gelungen ist:
    • die Koexistenz resonanter und nicht-resonanter Objekte
    • die relative Verteilung der großen Halbachse und der Exzentrizität des Kuipergürtels
    • die Existenz einer Außenkante in der Entfernung einer 2:1-Resonanz mit Neptun
    • die bimodale Verteilung der Objekte und die dabei bestehende Korrelation zwischen der Inklination und den Eigenschaften des Objekts
    • die orbitale Verteilung der Plutinos und der 2:5-Libratoren (eine 1975 von Franklin et al. beschrieben Klasse von Asteroiden)[2]
    • die Existenz der extended scattered disc
    • das Massendefizit des Kuipergürtels.

Kritik und Erweiterung

Wie bei der Abbildung oben erkennt man die Destabilisierung nach der 2:1-MMR und wie Neptun dabei über Uranus springt. Jedoch ist hier der hypothetische fünfte Planet berücksichtigt, man erkennt, wie er während der Instabilitätsphase aus dem System geworfen wird.

Das Modell beschreibt nicht die Migration in der protoplanetaren Gasscheibe, sondern setzt erst danach an. Die Probleme und offenen Fragen der klassischen planetaren Migration werden dadurch also nicht gelöst.

Bei der Entwicklung des Modells wurden nur die vier äußeren Riesenplaneten betrachtet, die Auswirkung auf die Bahnen der terrestrischen Planeten wurden nicht berücksichtigt. In der Instabilitätsphase würden diese jedoch wahrscheinlich gestört werden. Auch neigen derart instabile Systeme dazu, Planeten zu verlieren. Beides kann möglicherweise dadurch vermieden werden, dass man dem System ursprünglich einen weiteren Riesenplaneten hinzufügt, der das System stabilisiert und schließlich selbst aus dem Sonnensystem geworfen wird.

David Nesvorný vom Southwest Research Institute zeigte 2011, dass die Wahrscheinlichkeit dafür wesentlich höher ist als für ein Modell ohne fünften Riesenplaneten. Dabei wurden eine Vielzahl von Simulationen mit unterschiedlichen Anfangsbedingungen, Migrationsraten der Planeten, Auflösungsgeschwindigkeiten der Gasscheibe, Massen der Scheibe aus Planetesimalen und Massen des zusätzlichen Planeten (zwischen 1/3 und 3 Uranusmassen) gemacht und nach vier Kriterien ausgewertet:

  • Kriterium A: Am Ende muss das System genau 4 Riesenplaneten haben.
  • Kriterium B: Die Planeten müssen am Ende vergleichbare Umlaufbahnen zu den heute beobachtbaren haben. (z. B. max. 20 % Abweichung in der Großen Halbachse).
  • Kriterium C: Gewisse Parameter müssen so sein, dass die Möglichkeit zum Einfang irregulärer Monde besteht – wie oben beschrieben.
  • Kriterium D: Der Abstand zwischen Jupiter und Saturn muss so sein, dass die inneren terrestrischen Planeten überleben.

Bei der Auswertung stellte man fest, dass das Kriterium A bei anfangs 4 Riesenplaneten in unter 13 % der Simulationen erfüllt ist, während es bei anfangs 5 Planeten bei 37 % der Simulationen erfüllt ist; Kriterium B ist bei 4 Planeten in nur 2,5 % der Fällen erfüllt, während es bei Hinzunahme eines 5. Planeten in 23 % der Fälle erfüllt ist. Bei richtiger Wahl der Masse des fünften Planeten von 1/2 Uranusmasse steigen die Wahrscheinlichkeiten für Kriterium A und B sogar auf 50 % bzw. 20–30 %. Die inneren Planeten überleben beim klassischen Modell nur in etwa 1 % der Fälle – beim um einem Planeten erweiterten Modell steigt die Wahrscheinlichkeit jedoch auf etwa 10 %.

Die Untersuchung zeigt jedoch auch, dass das Kriterium C bei beiden Modellen nur sehr selten erfüllt ist. Da das Modell auch die irregulären Monde Jupiters nicht beschreiben kann, ist es fragwürdig, ob es zur Erklärung irregulärer Monde herangezogen werden kann.

Literatur

Weblinks

Einzelnachweise

  1. K. Tsiganis, R. Gomes, A. Morbidelli, H. F. Levison: Origin of the orbital architecture of the giant planets of the Solar System. In: Nature. Band 435, Nr. 7041, 26. Mai 2005, ISSN 0028-0836, S. 459–461, doi:10.1038/nature03539 (nature.com).
  2. Franklin et al., Minor planets and comets in libration about the 2:1 resonance with Jupiter

Die News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.