DGLAP-Gleichungen

DGLAP-Gleichungen

Version vom 24. Dezember 2021, 10:13 Uhr von imported>Crazy1880 (Vorlagen-fix (Format))
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die DGLAP-Gleichungen beschreiben in der Teilchenphysik, wie die Partondichten von der betrachteten Energieskala abhängen.[1] Sie wurden unabhängig von den Physikern Yuri Dokshitzer,[2] Wladimir Naumowitsch Gribow und Lew Nikolajewitsch Lipatow,[3] sowie Guido Altarelli und Giorgio Parisi[4] entwickelt, nach deren Anfangsbuchstaben die Gleichungen benannt sind. Nach den letzten beiden wurden die Gleichungen früher auch als Altarelli-Parisi-Gleichungen bezeichnet.

Hintergrund

Partondichten sind Verteilungsfunktionen von Bestandteilen stark gebundenener Systeme der starken Wechselwirkung wie zum Beispiel Protonen und hängen vom Impulsbruchteil des Partons $ x $ sowie der betrachteten Energieskala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 ab. Dabei ist der Impulsbruchteil zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 \le x \le 1 beschränkt, die Energieskala ist hingegen zu hohen Energien beliebig weit offen. Da die Kopplungskonstante der starken Wechselwirkung in gebundenen Systemen groß wird, sind diese Systeme perturbativ nicht beschreibbar; die Partondichten müssen daher experimentell bestimmt werden. Die DGLAP-Gleichungen ermöglichen es, diese experimentellen Messungen, statt für alle möglichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 , bei einer festen Energiesakala durchzuführen und aus diesen Daten das Verhalten der Partondichten auf beliebigen Energieskalen (bei festem Impulsbruchteil) zu erschließen.

Führende Ordnung

Die DGLAP-Gleichungen in der führenden Ordnung der Störungsreihe in der Kopplungskonstanten der starken Wechselwirkung lauten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 \frac{\partial}{\partial Q^2} \begin{pmatrix} q_i(x, Q^2) \\ \bar q_i(x, Q^2) \\ g(x, Q^2) \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \sum_{j} \int_x^1\frac{\mathrm d\xi}{\xi} \begin{pmatrix} P_{q_i q_j}(x/\xi) & 0 & P_{q_i g}(x/\xi) \\0 & P_{\bar q_i \bar q_j}(x/\xi) & P_{\bar q_i g} (x/\xi) \\ P_{g q_j}(x/\xi) & P_{g \bar q_j}(x/\xi) & P_{g g} (x/\xi) \end{pmatrix} \begin{pmatrix} q_j (\xi,Q^2) \\ \bar q_j(\xi,Q^2) \\ g(\xi,Q^2) \end{pmatrix}

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P die Splitting-Funktionen bezeichnet. Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 die Energieskala des betrachteten Prozesses, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x der Impulsbruchteil des betrachteten Teilchens im Vergleich zum Mutterteilchen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_i(x, Q^2) die Partondichtefunktion für Quarks beziehungsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bar q_i(x,Q^2) die für Antiquarks mit Flavour Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g(x, Q^2) die der Gluonen.

Splitting-Funktionen

Die Splitting-Funktionen nehmen für die möglichen Fälle vier verschiedene Formen an: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{qq} — Ein Quark strahlt ein Quark ab, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{gq} — Ein Quark strahlt ein Gluon ab, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P_{qg} — Ein Gluon strahlt ein Quark ab und $ P_{gg} $ — Ein Gluon strahlt ein Gluon ab. Für die Splitting-Funktionen ist unerheblich, ob es sich um Quarks oder Antiquarks handelt Darüber hinaus ist für die Gluon-Quark-Splittingfunktionen ebenfalls das Flavour der Quarks unerheblich, während für die Quark-Quark-Splittingfunktion nur Quarks identischen Flavours ineinander übergehen. Die Splitting-Funktionen haben daher die Form:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align}P_{q_i q_j} = P_{\bar q_i \bar q_j} \equiv \delta_{ij} P_{qq} &= \delta_{ij} C_F \left(\frac{1+x^2}{(1-x)_+}+\frac 3 2 \delta(1-x)\right) \\ P_{g q_i} = P_{g \bar q_i} \equiv P_{gq} &= C_F \left(\frac{1+(1-x)^2}{x}\right)\\ P_{q_i g} = P_{\bar q_i g} \equiv P_{qg} &= T_F \left(x^2+(1-x)^2\right)\\ P_{gg} &= 2C_A \left(\frac{x}{(1-x)_+}+(1-x)\left(x+\frac 1 x\right)\right) + \frac{11C_A-4n_fT_F}{6}\delta(1-x) \end{align}

Dabei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_F = 4/3 der quadratische Casimir-Operator der fundamentalen Darstellung der Lie-Gruppe der Theorie, im Standardmodell der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): SU(3) , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C_A = 3 der Casimir-Operator der adjungierten Darstellung, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_F = 1/2 der Index der fundamentalen Darstellung und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n_f=3 die Anzahl an Quark-Flavours.[5] Außerdem wurde die Plus-Distribution verwendet, die über die Gleichung[1]

$ \int _{0}^{1}{\frac {f(x)}{(1-x)_{+}}}\mathrm {d} x=\int _{0}^{1}{\frac {f(x)-f(1)}{1-x}}\mathrm {d} x $

definiert ist.

Alternative Basis

Statt der physikalischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (q_i,\bar q_i,g) -Basis kann zur Vereinfachung der Gleichungen die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (q_i^\text{NS},q_i^\text{S},g) -Basis verwendet werden. Dabei gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix} q_i^\text{NS} \\ q_i^\text{S} \\ g \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} q_i \\ \bar q_i \\ g \end{pmatrix}

Der Superskript Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \text{NS} beziffert die Non-Singulett-Dichtefunktion, während der Superskript Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \text{S} die Singulett-Dichtefunktion bezeichnet. Der Begriff des Singuletts bezieht sich in diesem Fall nicht auf die Multiplizität, sondern auf die Baryonenzahl, die sich im Fall des NS-Zustandes zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b = 2/3 und im Fall des S-Zustandes zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b = 0 ergibt.

Durch die Basistransformation entkoppeln die DGLAP-Gleichungen insofern, als dass zur Lösung der NS-Verteilungsfunktionen die Gluon-Verteilungsfunktion nicht benötigt wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 \frac{\partial}{\partial Q^2} \begin{pmatrix} q_i^\text{NS} (x,Q^2) \\ q_i^\text{S} (x,Q^2) \\ g (x,Q^2)\end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \sum_{j} \int_x^1\frac{\mathrm d\xi}{\xi} \begin{pmatrix} \delta_{ij} P_{qq}(x/\xi) & 0 & 0 \\ 0 & \delta_{ij} P_{qq}(x/\xi) & 2 P_{q g} (x/\xi) \\ 0 & P_{g q}(x/\xi) & P_{g g} (x/\xi) \end{pmatrix} \begin{pmatrix} q_j^\text{NS} (\xi,Q^2) \\ q_j^\text{S} (\xi,Q^2) \\ g(\xi,Q^2) \end{pmatrix}

DGLAP-Gleichungen im Mellin-Raum

Die DGLAP-Gleichungen können nach einer Mellin-Transformation vereinfacht dargestellt werden, da sich im Mellin-Raum das Integral in ein Produkt wandelt. Sie lauten dann:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 \frac{\partial}{\partial Q^2} \begin{pmatrix} q_i(N,Q^2) \\ \bar q_i(N,Q^2) \\g(N,Q^2) \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \sum_{j} \begin{pmatrix} \delta_{ij} \gamma_{qq}(N) & 0 & \gamma_{qg}(N) \\ 0 & \delta_{ij} \gamma_{qq}(N) & \gamma_{q g}(N) \\ \gamma_{gq}(N) & \gamma_{g q}(N) & \gamma_{gg}(N) \end{pmatrix} \begin{pmatrix} q_j(N,Q^2) \\ \bar q_j(N,Q^2) \\g(N,Q^2) \end{pmatrix}

Dabei ist die Mellin-Transformierte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(N) gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(N) = \int_0^\infty \mathrm dx x^{N-1} f(x)

Die auftretenden Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma nennt man anomale Dimension und sind die Mellin-Transformierten der Splitting-Funktionen.

Singulett/Non-Singulett-Basis im Mellin-Raum

Die DGLAP-Gleichungen in der Singulett/Non-Singulett-Basis lauten im Mellin-Raum entsprechend

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q^2 \frac{\partial}{\partial Q^2} \begin{pmatrix} q_i^\text{NS}(N,Q^2) \\ q_i^\text{S}(N,Q^2) \\g(N,Q^2) \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \sum_{j} \begin{pmatrix} \delta_{ij} \gamma_{qq}(N) & 0 & 0 \\ 0 & \delta_{ij} \gamma_{qq}(N) & 2\gamma_{q g}(N) \\ 0 & \gamma_{g q}(N) & \gamma_{gg}(N) \end{pmatrix} \begin{pmatrix} q_j^\text{NS}(N,Q^2) \\ q_j^\text{S}(N,Q^2) \\g(N,Q^2) \end{pmatrix}

Lösung

Durch diese Darstellung kann eine kompakte Lösung für die DGLAP-Gleichungen für die Non-Singulett-Verteilungsfunktionen angegeben werden, da die Energieskalenabhängigkeit der Kopplungskonstanten durch die Callan-Symanzik-Gleichung bestimmt ist. In führender Ordnung gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1+b_0 \alpha_s(\mu^2) \ln \frac{Q^2}{\mu^2}}

mit einer Referenzskala Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu^2 und einer theorieabhängigen Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): b_0 = \frac{33-2 n_f}{12\pi}

Dann ist die Lösung für die Non-Singulett-Verteilungsfunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_i^\text{NS}(N,Q^2) = q_i^\text{NS}(N,\mu^2) \left(1 + \alpha_s b_0 \ln \frac{Q^2}{\mu^2} \right)^\frac{\gamma_{q q}}{2\pi b_0}

Weiterführendes

  • M. E. Peskin, D. V. Schroeder: An Introduction to Quantum Field Theory. Westview Press, Boulder 1995, ISBN 0-201-50397-2, S. 590 ff.

Einzelnachweise

  1. 1,0 1,1 Guido Altarelli: QCD evolution equations for parton densities. In: Scholarpedia. Band 4, Nr. 1, 2009, S. 7124, doi:10.4249/scholarpedia.7124.
  2. Yuri L. Dokshitzer: Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e Annihilation by Perturbation Theory in Quantum Chromodynamics. In: Sov. Phys. JETP. Band 46, Nr. 4, 1977, S. 641–653 (jetp.ac.ru [PDF; abgerufen am 9. März 2014]).
  3. V. Gribov, L. Lipatov: Deep inelastic e p scattering in perturbation theory. In: Sov. J. Nucl. Phys. Band 15, 1972, S. 438–450.
  4. G. Altarelli, G. Parisi: Asymptotic freedom in parton language. In: Nuclear Physics B. Band 126, Nr. 2, 1977, S. 298–318, doi:10.1016/0550-3213(77)90384-4.
  5. CTEQ Handbook.