In der relativistischen Physik bezeichnet der Lichtkegel eines Ereignisses Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E die Menge aller Ereignisse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' , die sich mit Lichtgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E auswirken oder von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E mit Lichtgeschwindigkeit beeinflusst werden können.
Der Lichtkegel ist ein Doppelkegel im vierdimensionalen Minkowski-Raum. Er besteht aus
Seien
Wenn der Differenzvektor lichtartig ist:
dann liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' in der speziellen Relativitätstheorie auf dem Lichtkegel von $ E. $ Genau die Ereignisse auf dem Rückwärts- bzw. Vergangenheits-Lichtkegel sind aktuell für einen Beobachter sichtbar, der sich in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E aufhält (ohne Berücksichtigung der Expansion des Universums).
Ist der Differenzvektor zeitartig:
so liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' im Inneren des Rückwärts- oder Vorwärts-Lichtkegels von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E , je nachdem, ob es vor oder nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E stattgefunden hat. Dann kann es sich bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' um die Ursache oder um die Auswirkung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E handeln, die sich langsamer als Licht auswirkt. Ereignisse innerhalb des Rückwärts- bzw. Vergangenheits-Lichtkegels waren früher für einen Beobachter sichtbar, der sich an derselben Stelle im Raum aufhielt wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E (ohne Berücksichtigung der Expansion des Universums).
Ist der Differenzvektor raumartig:
so liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' außerhalb des Rückwärts- oder Vorwärts-Lichtkegels. Bei den Ereignissen kann es sich nicht um Ursache und Wirkung handeln, denn dann müsste sich eine Ursache mit Überlichtgeschwindigkeit auswirken. Ereignisse außerhalb des Rückwärts- bzw. Vergangenheits-Lichtkegels von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E und vor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E sind für einen Beobachter, der sich in $ E $ aufhält, (noch) nicht sichtbar (d. h. sie liegen hinter dem Ereignishorizont, ohne Berücksichtigung der Expansion des Universums).
Die Lösung der inhomogenen Klein-Gordon-Gleichung, gültig für Bosonen, hängt für das Ereignis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E nur ab von den früheren Anfangsbedingungen sowie der Inhomogenität auf dem Rückwärts-Lichtkegel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E und in seinem Inneren.
Die Lösung der homogenen Klein-Gordon-Gleichung (verschwindende Masse, entspricht der Wellengleichung) hängt nur ab von den Anfangsbedingungen und der Inhomogenität auf dem Rückwärts-Lichtkegel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E , aber nicht mehr von der Inhomogenität in seinem Inneren. Anfangsbedingungen und Inhomogenität wirken sich in diesem Fall nur mit Lichtgeschwindigkeit aus.
Die Folgen für die Lösung anderer grundlegender relativistischer Gleichungen (z. B. der Dirac-Gleichung, gültig für Fermionen) sind entsprechend.