Der Klein-Nishina-Wirkungsquerschnitt ist der Wirkungsquerschnitt, der die Winkelverteilung von Photonen angibt, die an ruhenden, punktförmigen, geladenen Teilchen gestreut werden (Compton-Streuung). Er wurde 1929 von Oskar Klein und Yoshio Nishina für das Elektron berechnet und war eines der ersten Ergebnisse der Quantenelektrodynamik. Er stimmt mit den experimentellen Ergebnissen überein. In diesem Artikel wird die Rechnung für das Elektron nachvollzogen; für andere punktförmige Teilchen sind die Elementarladung $ e $ und die Elektronenmasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m durch entsprechende Parameter abzuändern.
Die nun folgenden Formeln sind nicht im SI-System, sondern in einem für die Teilchenphysik angepassten natürlichen Einheitensystem angeschrieben, in dem gilt:
Bei der Photon-Teilchen-Streuung legen in einer halbklassischen Rechnung Energie- und Impulserhaltung fest, wie die Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' des gestreuten Photons vom Streuwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \theta und der ursprünglichen Photonenenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E abhängt (siehe Compton-Effekt):
Aus den Erhaltungssätzen folgt aber nicht, wie häufig dieser oder jener Streuwinkel auftritt. Diese Häufigkeit wird durch den differentiellen Wirkungsquerschnitt $ \mathrm {d} \sigma /\mathrm {d} \Omega $ angegeben. Er lautet im Laborsystem für unpolarisierte Photonen:
mit
Eine Integration über den differentiellen Wirkungsquerschnitt liefert den totalen Wirkungsquerschnitt:
mit der Abkürzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x = E/m .
Für Photonenergien, die klein gegen die Ruheenergie des Elektrons sind, gilt aufgrund der Masselosigkeit des Photons Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E \to 0 und somit
dann geht der Klein-Nishina-Wirkungsquerschnitt gegen den Thomson-Wirkungsquerschnitt, den Joseph Thomson für die Streuung einer elektromagnetischen Welle an einer Punktladung berechnet hatte:
mit dem Polarisationsfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1 + \cos^2\theta}{2} .
Für kleine Energien ist Rückwärtsstreuung des Photons also genauso wahrscheinlich wie Vorwärtsstreuung (vgl. Abbildung); erst bei höheren Energien wird Vorwärtsstreuung wahrscheinlicher (s. u.).
Für niederenergetische Photonen ist der totale Wirkungsquerschnitt nach einer Integration über den Raumwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d\Omega bis auf einen Faktor 8/3 die Fläche einer Kreisscheibe, deren Radius der klassische Elektronenradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r_\text{e} = \alpha \hbar / (c m_\text{e}) ist:
mit der Elektronenmasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_\text{e} .
Der totale Wirkungsquerschnitt im hochenergetischen Grenzfall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E \to \infty ergibt sich aus einer Entwicklung im Parameter $ x $ zu
Er fällt demnach bei hohen Photonenenergien mit der Energie ab.
Der fundamentale Prozess, der zum Klein-Nishina-Wirkungsquerschnitt führt, ist die Compton-Streuung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma e^- \rightarrow \gamma e^- . Bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p den Impuls des einlaufenden Elektrons und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k(k') den des ein(aus)laufenden Photons (der Impuls des auslaufenden Elektrons Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p' ist durch den Energie-Impuls-Erhaltungssatz bestimmt und keine unabhängige Größe), so lautet das Spin-gemittelte quadrierte Matrixelement der Streumatrix:
Für die Berechnung des differentiellen Wirkungsquerschnitts aus dem lorentzinvarianten Matrixelement muss ein Bezugssystem gewählt werden, im Fall des Klein-Nishina-Wirkungsquerschnitts das Ruhesystem des Elektrons. Weiterhin können die Koordinaten so gewählt werden, dass das einfallende Photon in $ z $-Richtung propagiert. Dann gilt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p = (m,0,0,0) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k = (E,0,0,E) sowie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k' = (E,E \sin \theta,0,E \cos \theta) für das Matrixelement
Den Quotienten der Energien von gestreutem und einfallenden Photon erhält man über den Energie-Impuls-Erhaltungssatz mittels
wie bereits obig postuliert, zu
Der differentielle Wirkungsquerschnitt ergibt sich nun quantenfeldtheoretisch nach
mit den Energien $ E_{A},E_{B} $ der Streupartner, der Geschwindigkeitsdifferenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta v = |v_A - v_B| sowie dem Phasenraum-Integral
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_i (p_f) für die Viererimpulse der eingehenden (ausgehenden) Teilchen stehen und die Delta-Distribution die Energie-Impuls-Erhaltung sichert.
Im Fall der Compton-Streuung ergibt sich das Phasenraumintegral schließlich zu
sowie aufgrund der Konstanz der Lichtgeschwindigkeit trivialerweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta v = 1 .
Alles zusammengefügt und mithilfe des Energie-Impuls-Erhaltungssatzes teilweise vereinfacht, ergibt dies schließlich den Klein-Nishina-Wirkungsquerschnitt