Die Ionenstärke (Formelzeichen $ I $, in der älteren Literatur auch µ) einer Lösung ist ein Maß für die elektrische Feldstärke aufgrund gelöster Ionen.[1][2] Die chemische Aktivität gelöster Ionen und die Leitfähigkeit von Elektrolyt-Lösungen stehen mit ihr im Zusammenhang.
Gemäß den Empfehlungen der IUPAC[3] kann die Ionenstärke sowohl über die Stoffmengenkonzentration als auch über die Molalität der gelösten Ionen definiert werden:
mit
Da die Ionenladung im Quadrat in die Ionenstärke eingeht, liefert ein zweifach geladenes Ion im Vergleich zu einem einwertigen Ion bei gleicher Konzentration den vierfachen Beitrag zur Ionenstärke.
Bei einfach geladenen Ionen ist die Ionenstärke bei vollständig dissoziierten Elektrolyten gleich der Salzkonzentration. Für eine Kochsalzlösung mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c (NaCl) = 0,001 mol/l beträgt die Konzentration der beiden Ionensorten Na+ und Cl− ebenfalls 0,001 mol/l. Die Ionenstärke ist wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z (Na+) = 1 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z (Cl−) = −1:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} I(\mathrm{NaCl}) & = \begin{matrix}\frac{1}{2}\end{matrix} \cdot (z^2(\mathrm{Na^+}) \cdot c(\mathrm{Na^+}) + z^2(\mathrm{Cl^-}) \cdot c(\mathrm{Cl^-}))\\ & = \begin{matrix}\frac{1}{2}\end{matrix} \cdot (1^2 \cdot c(\mathrm{NaCl}) + (-1)^2 \cdot c(\mathrm{NaCl}))\\ & = c(\mathrm{NaCl})\\ \Downarrow & \\ I & = \begin{matrix}\frac{1}{2}\end{matrix} \cdot (1^2 \cdot 0{,}001~\mathrm{mol/l} + (-1)^2 \cdot 0{,}001~\mathrm{mol/l}) \\ & = \begin{matrix}\frac{1}{2}\end{matrix} \cdot (0{,}001~\mathrm{mol/l} + 0{,}001~\mathrm{mol/l}) \\ & = 0{,}001~\mathrm{mol/l} \end{align}
Bei einem 1:2-wertigen oder 2:1-wertigen Elektrolyten, beispielsweise bei Calciumchlorid, ist die Ionenstärke gleich der dreifachen Salzkonzentration. Beispielsweise gilt für Calciumchlorid mit den Ladungszahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z (Ca2+) = 2 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z (Cl−) = −1 sowie den Stöchiometrieverhältnissen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c (CaCl2) = $ c $(Ca2+) = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle \frac c2 (Cl−):
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} I(\mathrm{CaCl_2}) &= \frac{1}{2} \cdot ( z^2(\mathrm{Ca^{2+}}) \cdot c(\mathrm{Ca^{2+}}) + z^2(\mathrm{Cl^-}) \cdot c(\mathrm{Cl^-}) )\\ &= \frac{1}{2} \cdot ( 2^2 \cdot c(\mathrm{CaCl_2}) + (-1)^2 \cdot 2 \cdot c(\mathrm{CaCl_2}))\\ &= \frac{1}{2} \cdot ( 6 \cdot c(\mathrm{CaCl_2}) )\\ &= 3 \cdot c(\mathrm{CaCl_2}) \end{align}
Die Ionenstärke wurde bei der Entwicklung der Debye-Hückel-Theorie als praktikable Größe in die Elektrochemie eingeführt. Diese Theorie zeigt, dass die mittleren Aktivitätskoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma in verdünnten Lösungen von der Wurzel der Ionenstärke abhängen, und liefert beispielsweise für verdünnte wässrige Lösungen bei 25 °C folgende Formel:
mit