Rayleighlänge

Rayleighlänge

Version vom 8. Juli 2021, 03:24 Uhr von imported>Koyaanisqatsi01 (Reference-Tag eingefügt)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Parameter am Fokus eines Gaußstrahls. $ w_{0} $ ist der kleinste Radius, den das Lichtfeld einnimmt. $ \Theta $ ist der Öffnungswinkel, mit dem das Licht fokussiert wird und unter dem es den Fokus wieder verlässt. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_\mathrm{R} ist die Rayleighlänge.

Die Rayleighlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_\mathrm{R} (nach Lord Rayleigh) ist die Distanz entlang der optischen Achse, die ein Laserstrahl braucht, bis seine Querschnittsfläche sich, ausgehend von der Strahltaille bzw. dem Fokus, verdoppelt. Der Radius des Strahls ist dort um den Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sqrt2 größer als an der Taille bzw. dem Fokus.

Wenn man die – für Laser meist zulässige – Näherung eines Gaußstrahls betrachtet, lässt sich die Rayleigh-Länge wie folgt ausdrücken:

$ z_{\mathrm {R} }={\frac {n\cdot \pi \cdot w_{0}^{2}}{\lambda _{0}}} $

wobei

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n der Brechungsindex des Mediums
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): w_0 der Radius des Strahls im Fokus
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda_0 die Vakuumwellenlänge des verwendeten Lichts ist.

Dies bedeutet: wenn rotes Licht (z. B. 650 nm Wellenlänge) mit ultraviolettem Licht (z. B. 325 nm) auf dieselbe Fläche im Fokus einer Linse oder eines Parabolspiegels gebündelt wird, hat sich das rote Licht nach nur der Hälfte der Strecke des ultravioletten bereits wieder soweit ausgebreitet, dass es die doppelte Ausgangsfläche beleuchtet.

Unter Berücksichtigung der Strahlqualität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac 1 {M^2} ändert sich die Formel zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z_\mathrm{R} = \frac 1 {M^2} \cdot \frac{n \cdot \pi \cdot w_0^2}{\lambda_0}

Strahldurchmesser im Fokus

Bei Vorliegen eines Gauß-Strahl gilt in paraxialer Näherung, dass der Durchmesser $ 2w_{0} $ des Strahls im Fokus durch die Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda = n \cdot\lambda_0 der Strahlung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n : Brechungsindex) und die Strahldivergenz, ausgedrückt über den Öffnungswinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Theta , bestimmt wird. Man erhält[1]:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D = 2w_0 \simeq \dfrac{4\lambda}{\pi \Theta} .

Fokussiert man einen kollimierten Gaußschen Lichtstrahl des Durchmessers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2w_1 mit einer Linse der Brennweite $ f $, so ist der Öffnungswinkel gegeben durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Theta \simeq 2w_1/f (paraxiale Näherung), so dass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D = 2w_0 \simeq \dfrac{2\lambda f}{\pi w_1} .

Beispiel: Ein kollimierter Laserstrahl der Wellenlänge 800 nm wird mit einer Linse der Brennweite 10 cm fokussiert. Bei einem Strahldurchmesser von 2 mm vor der Linse erhält man für den Durchmesser des Brennflecks den Wert 51 μm.

Weblinks

  • Rayleigh Length in der Encyclopedia of Laser Physics and Technology (engl.)

Einzelnachweise

  1. W. Zinth, U. Zinth: Optik. 3. Auflage. Oldenbourg, München 2011, ISBN 978-3-486-70534-8.