Version vom 23. November 2016, 21:54 Uhr von imported>Kein Einstein
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Eine Filmströmung (englisch film flow) ist eine Strömung, die mit einer freien Oberfläche etwa geradlinig ohne eingeschlossene unbenetzte Stellen entlang einer Körperkontur verläuft.[1] Über die benetzte Breite des Flüssigkeitsfilms existiert meist ein Abschnitt mit annähernd konstanter Filmdicke.[2]
Sind diese Bedingungen bei einer in sich geschlossenen Strömung mit freier Oberfläche nicht erfüllt, so spricht man von einer Rinnsalströmung, wobei eine geradlinig verlaufende Rinnsalströmung (mit rundlichem Strömungsquerschnitt) als Sonderfall einer Filmströmung angesehen werden kann.[1] Filmströmungen sollten nicht mit Schleppströmungen zwischen festen Berandungen verwechselt werden.
Filmströmung tritt folglich auf bei guter Benetzbarkeit der Flüssigkeit auf dem jeweiligen Feststoff oder bei hohen Flüssigkeitsbelastungen, also insgesamt bei einer guten Benetzung der Flüssigkeit auf dem Substrat.[3]
Einsatzgebiete
Filmströmungen werden angewendet z. B.
- in Packungskolonnen bei der Destillation, Absorption oder Kondensation[4]
- in Thermosiphonanlagen, Kühltürmen, Wärmeübertragern[5] und Verdampfern[2].
Strömungsverhalten
Turbulenz
Der Grad der Turbulenz kann mithilfe der Reynolds-Zahl ausgedrückt werden. Wird die Gleichung aus der klassischen Rohrströmung hergeleitet, so wird die charakteristische Länge auf die Filmdicke übertragen. Somit ergibt sich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re}_1 = \frac{v \cdot d}{\nu} = \frac{\dot V}{b \cdot \nu}
.
Dabei stehen die Formelzeichen für folgende Größen:
- $ \!\ v $ – charakteristische Strömungsgeschwindigkeit des Fluids gegenüber dem Körper (m s−1)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \!\ d
– charakteristische Filmdicke des Fluids (m)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \!\nu
– charakteristische kinematische Viskosität des Fluids (m2 s−1)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \!\ \dot V
– charakteristischer Volumenstrom des Fluids (l/s)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \!\ b
– charakteristische Filmbreite des Fluids (m)
Für den Übergang zwischen laminarer und turbulenter Filmströmung wird ein Reynolds-Zahlenbereich von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re}_1 = 75 \dotsc 400
angegeben.[6] Ab Reynolds-Zahlen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re}_1 = 400 \dotsc 800
gilt die Filmströmung als vollständig turbulent.[6]
Weiterhin besteht die Möglichkeit, die Gleichung für die Reynolds-Zahl aus der Gerinneströmung abzuleiten. Dabei entspricht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d
aus der obigen Gleichung dem hydraulischen Durchmesser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_h
, der sich wie folgt berechnet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d_h = \frac{4 \cdot A}{U} = \frac{4 \cdot b \cdot d}{b} = 4 \cdot d
.
Damit ergibt sich die Reynolds-Zahl:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re}_2 = \frac{4 \cdot v \cdot d}{\nu} = 4 \cdot \mathit{Re}_1
.
Die kritischen Reynolds-Zahlenbereiche zur Beschreibung des Turbulenzverhaltens sind dementsprechend ebenfalls viermal so hoch. Konkret: für den Übergang zwischen laminarer und turbulenter Filmströmung wird ein Reynolds-Zahlenbereich von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re}_2 = 300 \dotsc 1600
angegeben. Ab Reynolds-Zahlen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re}_2 = 1600 \dotsc 3200
gilt die Filmströmung als vollständig turbulent.
Aufreißen
Zur Berechnung der Kriterien des Aufreißens einer Filmströmung wurden verschiedene Ansätze entwickelt. Meist wird dazu die minimale Gesamtenergie der Strömung betrachtet. Ein weiteres Verfahren basiert auf dem Kräftegleichgewicht am stationären Aufreißpunkt des Flüssigkeitsfilms.[1] El-Genk und Saber geben folgende Gleichung zur Ermittlung der minimalen Benetzungsrate an:[7]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Gamma_\mathrm{min} = 0{,}67 \Delta_\mathrm{min}^{2{,}93} + 0{,}26 \Delta_\mathrm{min}^{9{,}51}
mit:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta_\mathrm{min} = (1-\cos \theta_0)^{0{,}22}
.
Die Formelzeichen stehen für folgende Größen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \!\ \Gamma_\mathrm{min}
– minimale Benetzungsrate (dimensionslos)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \!\ \Delta_\mathrm{min}
– minimale Filmdicke (dimensionslos)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \!\ \theta_0
– Kontaktwinkel im Gleichgewicht
Einzelnachweise
- ↑ 1,0 1,1 1,2 P. Schmuki, M. Laso: On the stability of rivulet flow. Journal of Fluid Mechanics. 1990, 215, S. 125–143, doi:10.1017/S0022112090002580. S. 125 f.
- ↑ 2,0 2,1 A. Doniec: Flow of a laminar liquid film down a vertical surface. Chemical Engineering Science. 1988, 43 (4), S. 847–854, doi:10.1016/0009-2509(88)80080-0. S. 847.
- ↑ A. Hoffmann: Untersuchung mehrphasiger Filmströmungen unter Verwendung einer Volume-Of-Fluid-ähnlichen Methode. S. 8.
- ↑ A. Hoffmann: Untersuchung mehrphasiger Filmströmungen unter Verwendung einer Volume-Of-Fluid-ähnlichen Methode. Dissertation. Technische Universität Berlin, 2010. S. 1 f. (PDF-Datei; 6,2 kB).
- ↑ M. S. El-Genk, H. H. Saber: Minimum thickness of a flowing down liquid film on a vertical surface. International Journal of Heat and Mass Transfer. 2001, 44 (15), S. 2809–2825, doi:10.1016/S0017-9310(00)00326-4. S. 2809.
- ↑ 6,0 6,1 F. Al-Sibai: Experimentelle Untersuchung der Strömungscharakteristik und des Wärmeübergangs bei welligen Rieselfilmen. Dissertation. RWTH Aachen, 2005. S. 7 (PDF-Datei; 10,6 kB).
- ↑ M. S. El-Genk, H. H. Saber: Minimum thickness of a flowing down liquid film on a vertical surface. S. 2819.