Version vom 16. April 2021, 20:36 Uhr von imported>Bildungsbürger
| Physikalische Kennzahl
|
| Name |
Bond-Zahl, Eötvös-Zahl
|
| Formelzeichen
|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo}, \mathit{Eo}
|
| Dimension
|
dimensionslos
|
| Definition
|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo} = \frac{f\, L^2}{\sigma}
|
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f
|
Kraftdichte der Volumenkraft
|
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L
|
charakteristische Länge
|
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma
|
Oberflächenspannung
|
|
| Benannt nach
|
Wilfrid Noel Bond, Loránd Eötvös
|
| Anwendungsbereich
|
Phasengrenzflächen von Fluiden
|
Die Bond-Zahl (Formelzeichen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo}
, nach dem englischen Physiker Wilfrid Noel Bond (1897–1937)[1][2]) oder Eötvös-Zahl (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Eo}
, nach dem ungarischen Mathematiker und Geophysiker Loránd Eötvös) ist eine dimensionslose Kennzahl der Fluidmechanik. Sie kann physikalisch interpretiert werden als das Verhältnis der Volumenkraft, die auf die Flüssigkeit wirkt, zur Kraft aufgrund von Oberflächenspannung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo} = \frac{F_\text{Volumen}}{F_\text{Oberfläche}}
Die Bezeichnung Eötvös-Zahl kann verwendet werden
- als Synonym zu Bond-Zahl[1]
- als Spezialfall der Bond-Zahl im Fall von Auftrieb[3] oder
- als Verallgemeinerung der Bond-Zahl für beliebige charakteristische Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L
.[4]
Ähnlich wie die Reynolds-Zahl eignet sich die Bond-Zahl zum Vergleich von Systemen, die sich in einzelnen Parametern wie Dichte, Größe oder Oberflächenspannung unterscheiden. Im Gegensatz zur Reynoldszahl, die bei Strömungen Anwendung findet, charakterisiert die Bondzahl jedoch statische Systeme. Ein kleiner Wert bedeutet, dass das System von der Oberflächenspannung bestimmt wird, ein großer Wert dagegen, dass die Oberflächenspannung zur Abschätzung des Verhaltens vernachlässigt werden kann. Zusammen mit der Morton-Zahl beschreibt die Bond-Zahl so beispielsweise die Form eines fluiden Partikels (Luftblase, Wassertropfen etc.) unter dem Einfluss der Gravitation.
Spezialfall: Gravitation als Volumenkraft
Ist die Volumenkraft durch die Gravitation gegeben, so wird die Bond-Zahl folgendermaßen gebildet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo} = \frac{\text{Gravitationskraft}}{\mathrm{Oberfl\ddot achenkraft}} = \frac{\text{hydrostatischer Druck}}{\text{Kapillardruck}} = \frac{\rho \cdot g \cdot H \cdot R}{2\sigma}
Dabei beschreibt
- $ H $ die vertikale Höhe
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R
den für den Kapillardruck verantwortlichen Radius z. B. eines Tropfens. Beide müssen nicht identisch sein, so dass oft zwei Längenskalen in die Bond-Zahl eingehen (z. B. vertikale Kapillare: Füllhöhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H
, Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R
).
Weiterhin ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho
die Dichte
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g
die Schwerebeschleunigung
- $ \sigma $ die Oberflächenspannung.
Im Fall, dass der Auftrieb nicht vernachlässigt werden kann oder überwiegt, beispielsweise eine Luftblase im Wasser, muss die Volumenkraft aus der Differenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta \rho
der Dichten beider Phasen, hier Wasser und Luft berechnet werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo} = \frac{\Delta \rho \cdot g \cdot R^2}{\sigma}
Beispiel: Ein Tropfen
Bei einem Tropfen Flüssigkeit auf einer ebenen, waagerechten Fläche erlaubt die Bond-Zahl eine Vorhersage über die Form, die er annimmt. In diesem Fall bestimmt sich die Bond-Zahl mit dem charakteristischen Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R
wie folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo} = \frac{\rho g R^2}{\sigma}
Der Radius geht in diesem Fall maximal doppelt in die Gewichtskraft ein (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H = 2 R
) und ist für den Kapillardruck verantwortlich. Im Gegensatz zur Morton-Zahl, welche nur von den Eigenschaften des Fluids abhängt, ändert sich die Bond-Zahl mit dem Radius des Tropfens.
Wenn $ {\mathit {Bo}} $ sehr viel kleiner als eins ist, spielt die Gravitation keine Rolle, und der Tropfen ist in guter Näherung kugelförmig. Bei größeren Werten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Bo}
ist sie ellipsenförmig und bei niedriger Morton-Zahl (meist bei Flüssigkeiten geringer Viskosität, beispielsweise Wasser) eher wackelig. Bei noch größeren Bond-Zahlen nimmt der Tropfen die Form einer runden Kappe an, welche sich bei Regentropfen schließlich in zwei kleinere Tropfen aufteilt.[5]
Einzelnachweise
- ↑ 1,0 1,1 Josef Kunes: Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012, ISBN 0-12-391458-2, S. 95 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Willi H. Hager: Wilfrid Noel Bond and the Bond number. In: Journal of Hydraulic Research. Band 50, Nr. 1, S. 3–9, doi:10.1080/00221686.2011.649839.
- ↑ R. Schmel: Dissertation: Tropfendeformation und Nachzerfall bei der technischen Gemischaufbereitung. In: Forschungsbericht des ITS. Band 23. LOGOS-Verlag, 2004, ISBN 3-8325-0707-8, S. 53 (kit.edu).
- ↑ Satish Kandlikar, Srinivas Garimella, Dongqing Li, Stephane Colin, Michael R. King: Heat Transfer and Fluid Flow in Minichannels and Microchannels. Butterworth-Heinemann, 2013, ISBN 0-08-098351-0, S. 229 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ C.B. Jenssen et al.: Parallel Computational Fluid Dynamics 2000: Trends and Applications. Gulf Professional Publishing, 2001, ISBN 0-08-053840-1, S. 80 (eingeschränkte Vorschau in der Google-Buchsuche).
en:Bond number