Riemannsche Normalkoordinaten

Riemannsche Normalkoordinaten

Version vom 29. Juni 2019, 06:16 Uhr von imported>Godung Gwahag (→‎Physikalische Sicht)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Riemannsche Normalkoordinaten (nach Bernhard Riemann; auch Normalkoordinaten oder Exponentialkoordinaten) bilden ein besonderes Koordinatensystem, welches in der Differentialgeometrie betrachtet wird. Hier wird der Tangentialraum an Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p als lokale Karte der Mannigfaltigkeit in einer Umgebung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p verwendet. Solche Koordinaten sind einfach zu handhaben und finden daher auch Anwendung in der allgemeinen Relativitätstheorie.

Definition

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M eine differenzierbare Mannigfaltigkeit mit einem affinen Zusammenhang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nabla und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma sei eine beliebige Kurve, welche die Geodätengleichung $ \nabla _{{\dot {\gamma }}(t)}{\dot {\gamma }}(t)=0 $ erfüllt. Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T_pM werde der Tangentialraum am Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p \in M bezeichnet und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{E}_p \subset T_pM werde mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \exp_p \colon \mathcal{E}_p \to M, \quad V \mapsto \exp_p(V) := \gamma_V(1)

die Exponentialabbildung bezeichnet. Durch eine Wahl einer Orthonormalbasis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (E_i)_i von $ T_{p}M $ erhält man einen Isomorphismus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E \colon \R^n \to T_pM,

welcher durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle E(x^1,\ldots , x^n) = \sum_i x^iE_i definiert ist. Sei weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U \subset M eine offene Umgebung von $ p $, auf welcher die Exponentialabbildung ein Diffeomorphismus ist, und für welche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 \in \exp_p^{-1}(U) \subset T_pM gilt. Dann erhält man eine Abbildung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi \colon U \to \R^n, \quad U \ni q \mapsto E^{-1} \circ \exp_p^{-1}(q).

Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \exp_p auf den entsprechenden Definitionsbereichen einen Isomorphismus bzw. Diffeomorphismus definiert, ist auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi ebenfalls diffeomorph und kann somit als Kartenabbildung angesehen werden. Die lokalen Koordinaten, welche man durch diese Karten erhält, heißen riemannsche Normalkoordinaten.

Eigenschaften

Sei $ (M,g) $ eine riemannsche oder pseudo-riemannsche Mannigfaltigkeit und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (U,(x^i)^i) lege zentrierte riemannsche Normalkoordinaten in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p \in M fest. Es gilt:

  • Für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle V := \sum_i V^i \partial_i \in T_pM hat die Geodäte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma_V , welche in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p mit dem Geschwindigkeitsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V beginnt, in riemannschen Normalkoordinaten die Darstellung
$ \gamma _{V}(t)=(tV^{1},\ldots ,tV^{n}) $
solange Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma_V in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): U bleibt.
  • Die Koordinaten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (0, \ldots, 0) .
  • Die Komponenten der riemannschen Metrik in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g_{ij} = \delta_{ij} .
  • Die Christoffelsymbole in $ p $ sind null.
  • Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nabla der Levi-Civita-Zusammenhang (oder ein anderer metrischer Zusammenhang), dann gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \partial_{x_k}(g_{ij})|_p = 0.

Physikalische Sicht

Physikalisch betrachtet beschreiben Normalkoordinaten im Raumzeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p das Ruhesystem eines frei fallenden Beobachters im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p . Dieser Punkt wird als Ursprung des Koordinatensystems festgelegt. Normalkoordinaten eignen sich zur Beschreibung des Äquivalenzprinzips der allgemeinen Relativitätstheorie. In Normalkoordinaten sind alle Geodäten durch den Ursprung Geraden in der vierdimensionalen Raumzeit. Damit wird verständlich, was die Äquivalenz frei fallender Beobachter mit Beobachtern in Inertialsystemen bedeutet. Da nur die Geodäten durch einen einzigen Raumzeitpunkt Geraden sind, ist das Äquivalenzprinzip nur in einem einzelnen Raumzeitpunkt genau gültig. Die krummen Geodäten, die nicht durch den Ursprung laufen, werden vom Beobachter durch Gezeitenkräfte erklärt.

In Normalkoordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x^{\alpha} lässt sich der metrische Tensor in einem Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): P der pseudo-riemannschen Mannigfaltigkeit als Reihenentwicklung in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x^{\alpha} angeben. Bis zur 5. Ordnung hat man somit:

$ g_{\mu \nu }(x)=\eta _{\mu \nu }+{\tfrac {1}{3}}R_{\mu \alpha _{1}\alpha _{2}\nu }x^{\alpha _{1}}x^{\alpha _{2}}+{\tfrac {1}{6}}R_{\mu (\alpha _{1}\alpha _{2}|\nu ;|\alpha _{3})}x^{\alpha _{1}}x^{\alpha _{2}}x^{\alpha _{3}}+{\tfrac {1}{20}}{\bigl [}R_{\mu (\alpha _{1}\alpha _{2}|\nu ;|\alpha _{3}\alpha _{4})}+{\tfrac {8}{9}}R_{\mu (\alpha _{1}\alpha _{2}|\delta }R^{\delta }{}_{|\alpha _{3}\alpha _{4})\nu }{\bigr ]}x^{\alpha _{1}}x^{\alpha _{2}}x^{\alpha _{3}}x^{\alpha _{4}}+{\mathcal {O}}(x^{5}), $

dabei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta_{\mu\nu} die Komponenten der Minkowski-Metrik und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R_{\mu\lambda\nu\rho} die Komponenten des riemannschen Krümmungstensors, wobei die einsteinsche Summenkonvention verwendet wurde. Mit zunehmendem Abstand des Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x vom Koordinatenursprung bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x=0 weicht der metrische Tensor immer mehr von der flachen Minkowski-Metrik ab, wobei der (durch ein Christoffel-Symbol gegebene) Koeffizient erster Ordnung in diesen Koordinaten gerade verschwindet, und die erste nichtverschwindende Korrektur zur flachen Minkowski-Metrik somit erst in quadratischer Ordnung auftritt und durch den Riemanntensor gegeben ist. Die Koeffizienten in den höheren Ordnungen sind durch nicht-kommutative Tensorpolynome im Riemanntensor und seinen kovarianten Ableitungen gegeben, die hier mithilfe der Semikolon-Schreibweise kompakt dargestellt werden, d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R_{\mu \alpha_{1}\alpha_{2} \nu ; \alpha_{3}} := \nabla_{\alpha_{3}} R_{\mu \alpha_{1}\alpha_{2} \nu} . Über Indizes in runden Klammern wird symmetrisiert und in senkrechten Strichen eingeschlossenen Indizes, sind von der Symmetrisierung ausgeschlossen.

Literatur

  • John M. Lee: Riemannian Manifolds. An Introduction to Curvature. Springer, New York 1997, ISBN 0387983228.